android_kernel_xiaomi_sm7250/drivers/soc/qcom/dcc_v2.c

1944 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/fs.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <soc/qcom/memory_dump.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/minidump.h>
#include <dt-bindings/soc/qcom,dcc_v2.h>
#define TIMEOUT_US (100)
#define BM(lsb, msb) ((BIT(msb) - BIT(lsb)) + BIT(msb))
#define BMVAL(val, lsb, msb) ((val & BM(lsb, msb)) >> lsb)
#define BVAL(val, n) ((val & BIT(n)) >> n)
#define dcc_writel(drvdata, val, off) \
__raw_writel((val), drvdata->base + dcc_offset_conv(drvdata, off))
#define dcc_readl(drvdata, off) \
__raw_readl(drvdata->base + dcc_offset_conv(drvdata, off))
#define dcc_sram_readl(drvdata, off) \
__raw_readl(drvdata->ram_base + off)
#define HLOS_LIST_START 0
/* DCC registers */
#define DCC_HW_VERSION (0x00)
#define DCC_HW_INFO (0x04)
#define DCC_SRAM_SIZE_INFO (0x08)
#define DCC_APU_INFO (0x0C)
#define DCC_LL_NUM_INFO (0x10)
#define DCC_TIMEOUT_SIGNATURE (0x14)
#define DCC_EXEC_CTRL (0x18)
#define DCC_STATUS (0x1C)
#define DCC_CFG (0x20)
#define DCC_FDA_CURR (0x24)
#define DCC_LLA_CURR (0x28)
#define DCC_LL_LOCK(m) (0x2C + 0x80 * (m + HLOS_LIST_START))
#define DCC_LL_CFG(m) (0x30 + 0x80 * (m + HLOS_LIST_START))
#define DCC_LL_BASE(m) (0x34 + 0x80 * (m + HLOS_LIST_START))
#define DCC_FD_BASE(m) (0x38 + 0x80 * (m + HLOS_LIST_START))
#define DCC_LL_TIMEOUT(m) (0x3c + 0x80 * (m + HLOS_LIST_START))
#define DCC_TRANS_TIMEOUT(m) (0x40 + 0x80 * (m + HLOS_LIST_START))
#define DCC_LL_INT_ENABLE(m) (0x44 + 0x80 * (m + HLOS_LIST_START))
#define DCC_LL_INT_STATUS(m) (0x48 + 0x80 * (m + HLOS_LIST_START))
#define DCC_FDA_CAPTURED(m) (0x4C + 0x80 * (m + HLOS_LIST_START))
#define DCC_LLA_CAPTURED(m) (0x50 + 0x80 * (m + HLOS_LIST_START))
#define DCC_LL_CRC_CAPTURED(m) (0x54 + 0x80 * (m + HLOS_LIST_START))
#define DCC_LL_SW_TRIGGER(m) (0x58 + 0x80 * (m + HLOS_LIST_START))
#define DCC_LL_BUS_ACCESS_STATUS(m) (0x5C + 0x80 * (m + HLOS_LIST_START))
#define DCC_MAP2_LEVEL1 (0x18)
#define DCC_MAP2_OFFSET1 (0x10)
#define DCC_MAP2_LEVEL2 (0x44)
#define DCC_MAP2_OFFSET2 (0x14)
#define DCC_FIX_LOOP_OFFSET (16)
#define DCC_REG_DUMP_MAGIC_V2 (0x42445953)
#define DCC_REG_DUMP_VER (1)
#define MAX_DCC_OFFSET (0xFF * 4)
#define MAX_DCC_LEN 0x7F
#define MAX_LOOP_CNT 0xFF
#define DCC_ADDR_DESCRIPTOR 0x00
#define DCC_LOOP_DESCRIPTOR (BIT(30))
#define DCC_RD_MOD_WR_DESCRIPTOR (BIT(31))
#define DCC_LINK_DESCRIPTOR (BIT(31) | BIT(30))
#define DCC_READ_IND 0x00
#define DCC_WRITE_IND (BIT(28))
#define DCC_AHB_IND 0x00
#define DCC_APB_IND BIT(29)
#define DCC_MAX_LINK_LIST 8
#define DCC_INVALID_LINK_LIST 0xFF
enum dcc_func_type {
DCC_FUNC_TYPE_CAPTURE,
DCC_FUNC_TYPE_CRC,
};
static const char * const str_dcc_func_type[] = {
[DCC_FUNC_TYPE_CAPTURE] = "cap",
[DCC_FUNC_TYPE_CRC] = "crc",
};
enum dcc_data_sink {
DCC_DATA_SINK_SRAM,
DCC_DATA_SINK_ATB
};
enum dcc_descriptor_type {
DCC_ADDR_TYPE,
DCC_LOOP_TYPE,
DCC_READ_WRITE_TYPE,
DCC_WRITE_TYPE
};
static const char * const str_dcc_data_sink[] = {
[DCC_DATA_SINK_SRAM] = "sram",
[DCC_DATA_SINK_ATB] = "atb",
};
struct rpm_trig_req {
uint32_t enable;
uint32_t reserved;
};
struct dcc_config_entry {
uint32_t base;
uint32_t offset;
uint32_t len;
uint32_t index;
uint32_t loop_cnt;
uint32_t write_val;
uint32_t mask;
bool apb_bus;
enum dcc_descriptor_type desc_type;
struct list_head list;
};
struct dcc_drvdata {
void __iomem *base;
uint32_t reg_size;
struct device *dev;
struct mutex mutex;
void __iomem *ram_base;
uint32_t ram_size;
uint32_t ram_offset;
enum dcc_data_sink *data_sink;
enum dcc_func_type *func_type;
uint32_t ram_cfg;
uint32_t ram_start;
bool *enable;
bool *configured;
bool interrupt_disable;
bool memory_map2;
char *sram_node;
struct cdev sram_dev;
struct class *sram_class;
struct list_head *cfg_head;
uint32_t *nr_config;
uint32_t nr_link_list;
uint8_t curr_list;
uint8_t *cti_trig;
uint8_t loopoff;
};
static uint32_t dcc_offset_conv(struct dcc_drvdata *drvdata, uint32_t off)
{
if (!drvdata->memory_map2) {
if ((off & 0x7F) > DCC_MAP2_LEVEL2)
return (off - DCC_MAP2_OFFSET2);
else if ((off & 0x7F) > DCC_MAP2_LEVEL1)
return (off - DCC_MAP2_OFFSET1);
}
return (off);
}
static int dcc_sram_writel(struct dcc_drvdata *drvdata,
uint32_t val, uint32_t off)
{
if (unlikely(off > (drvdata->ram_size - 4)))
return -EINVAL;
__raw_writel((val), drvdata->ram_base + off);
return 0;
}
static void dcc_sram_memset(const struct device *dev, void __iomem *dst,
int c, size_t count)
{
u64 qc = (u8)c;
qc |= qc << 8;
qc |= qc << 16;
if (!count || !IS_ALIGNED((unsigned long)dst, 4)
|| !IS_ALIGNED((unsigned long)count, 4)) {
dev_err(dev,
"Target address or size not aligned with 4 bytes\n");
return;
}
while (count >= 4) {
__raw_writel_no_log(qc, dst);
dst += 4;
count -= 4;
}
}
static int dcc_sram_memcpy(void *to, const void __iomem *from,
size_t count)
{
if (!count || (!IS_ALIGNED((unsigned long)from, 4) ||
!IS_ALIGNED((unsigned long)to, 4) ||
!IS_ALIGNED((unsigned long)count, 4))) {
return -EINVAL;
}
while (count >= 4) {
*(unsigned int *)to = __raw_readl_no_log(from);
to += 4;
from += 4;
count -= 4;
}
return 0;
}
static bool dcc_ready(struct dcc_drvdata *drvdata)
{
uint32_t val;
/* poll until DCC ready */
if (!readl_poll_timeout((drvdata->base + DCC_STATUS), val,
(BMVAL(val, 0, 1) == 0), 1, TIMEOUT_US))
return true;
return false;
}
static int dcc_read_status(struct dcc_drvdata *drvdata)
{
int curr_list;
uint32_t bus_status;
uint32_t ll_cfg = 0;
uint32_t tmp_ll_cfg = 0;
for (curr_list = 0; curr_list < drvdata->nr_link_list; curr_list++) {
if (!drvdata->enable[curr_list])
continue;
bus_status = dcc_readl(drvdata,
DCC_LL_BUS_ACCESS_STATUS(curr_list));
if (bus_status) {
dev_err(drvdata->dev,
"Read access error for list %d err: 0x%x.\n",
curr_list, bus_status);
ll_cfg = dcc_readl(drvdata, DCC_LL_CFG(curr_list));
tmp_ll_cfg = ll_cfg & ~BIT(9);
dcc_writel(drvdata, tmp_ll_cfg, DCC_LL_CFG(curr_list));
dcc_writel(drvdata, 0x3,
DCC_LL_BUS_ACCESS_STATUS(curr_list));
dcc_writel(drvdata, ll_cfg, DCC_LL_CFG(curr_list));
return -ENODATA;
}
}
return 0;
}
static int dcc_sw_trigger(struct dcc_drvdata *drvdata)
{
int ret = 0;
int curr_list;
uint32_t ll_cfg = 0;
uint32_t tmp_ll_cfg = 0;
mutex_lock(&drvdata->mutex);
for (curr_list = 0; curr_list < drvdata->nr_link_list; curr_list++) {
if (!drvdata->enable[curr_list])
continue;
ll_cfg = dcc_readl(drvdata, DCC_LL_CFG(curr_list));
tmp_ll_cfg = ll_cfg & ~BIT(9);
dcc_writel(drvdata, tmp_ll_cfg, DCC_LL_CFG(curr_list));
dcc_writel(drvdata, 1, DCC_LL_SW_TRIGGER(curr_list));
dcc_writel(drvdata, ll_cfg, DCC_LL_CFG(curr_list));
}
if (!dcc_ready(drvdata)) {
dev_err(drvdata->dev,
"DCC is busy after receiving sw tigger.\n");
ret = -EBUSY;
goto err;
}
ret = dcc_read_status(drvdata);
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static int __dcc_ll_cfg(struct dcc_drvdata *drvdata, int curr_list)
{
int ret = 0;
uint32_t sram_offset = drvdata->ram_cfg * 4;
uint32_t prev_addr, addr;
uint32_t prev_off = 0, off;
uint32_t loop_off = 0;
uint32_t link;
uint32_t pos, total_len = 0, loop_len = 0;
uint32_t loop, loop_cnt = 0;
bool loop_start = false;
struct dcc_config_entry *entry;
prev_addr = 0;
addr = 0;
link = 0;
list_for_each_entry(entry, &drvdata->cfg_head[curr_list], list) {
switch (entry->desc_type) {
case DCC_READ_WRITE_TYPE:
{
if (link) {
/* write new offset = 1 to continue
* processing the list
*/
ret = dcc_sram_writel(drvdata,
link, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
/* Reset link and prev_off */
addr = 0x00;
link = 0;
prev_off = 0;
prev_addr = addr;
}
addr = DCC_RD_MOD_WR_DESCRIPTOR;
ret = dcc_sram_writel(drvdata, addr, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
ret = dcc_sram_writel(drvdata,
entry->mask, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
ret = dcc_sram_writel(drvdata,
entry->write_val, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
addr = 0;
break;
}
case DCC_LOOP_TYPE:
{
/* Check if we need to write link of prev entry */
if (link) {
ret = dcc_sram_writel(drvdata,
link, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
}
if (loop_start) {
loop = (sram_offset - loop_off) / 4;
loop |= (loop_cnt << drvdata->loopoff) &
BM(drvdata->loopoff, 27);
loop |= DCC_LOOP_DESCRIPTOR;
total_len += (total_len - loop_len) * loop_cnt;
ret = dcc_sram_writel(drvdata,
loop, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
loop_start = false;
loop_len = 0;
loop_off = 0;
} else {
loop_start = true;
loop_cnt = entry->loop_cnt - 1;
loop_len = total_len;
loop_off = sram_offset;
}
/* Reset link and prev_off */
addr = 0x00;
link = 0;
prev_off = 0;
prev_addr = addr;
break;
}
case DCC_WRITE_TYPE:
{
if (link) {
/* write new offset = 1 to continue
* processing the list
*/
ret = dcc_sram_writel(drvdata,
link, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
/* Reset link and prev_off */
addr = 0x00;
prev_off = 0;
prev_addr = addr;
}
off = entry->offset/4;
/* write new offset-length pair to correct position */
link |= ((off & BM(0, 7)) | BIT(15) |
((entry->len << 8) & BM(8, 14)));
link |= DCC_LINK_DESCRIPTOR;
/* Address type */
addr = (entry->base >> 4) & BM(0, 27);
if (entry->apb_bus)
addr |= DCC_ADDR_DESCRIPTOR | DCC_WRITE_IND
| DCC_APB_IND;
else
addr |= DCC_ADDR_DESCRIPTOR | DCC_WRITE_IND
| DCC_AHB_IND;
ret = dcc_sram_writel(drvdata, addr, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
ret = dcc_sram_writel(drvdata, link, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
ret = dcc_sram_writel(drvdata,
entry->write_val, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
addr = 0x00;
link = 0;
break;
}
default:
{
/* Address type */
addr = (entry->base >> 4) & BM(0, 27);
if (entry->apb_bus)
addr |= DCC_ADDR_DESCRIPTOR | DCC_READ_IND
| DCC_APB_IND;
else
addr |= DCC_ADDR_DESCRIPTOR | DCC_READ_IND
| DCC_AHB_IND;
off = entry->offset/4;
total_len += entry->len * 4;
if (!prev_addr || prev_addr != addr || prev_off > off) {
/* Check if we need to write prev link entry */
if (link) {
ret = dcc_sram_writel(drvdata,
link, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
}
dev_dbg(drvdata->dev,
"DCC: sram address 0x%x\n",
sram_offset);
/* Write address */
ret = dcc_sram_writel(drvdata,
addr, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
/* Reset link and prev_off */
link = 0;
prev_off = 0;
}
if ((off - prev_off) > 0xFF ||
entry->len > MAX_DCC_LEN) {
dev_err(drvdata->dev,
"DCC: Progamming error Base: 0x%x, offset 0x%x\n",
entry->base, entry->offset);
ret = -EINVAL;
goto err;
}
if (link) {
/*
* link already has one offset-length so new
* offset-length needs to be placed at
* bits [29:15]
*/
pos = 15;
/* Clear bits [31:16] */
link &= BM(0, 14);
} else {
/*
* link is empty, so new offset-length needs
* to be placed at bits [15:0]
*/
pos = 0;
link = 1 << 15;
}
/* write new offset-length pair to correct position */
link |= (((off-prev_off) & BM(0, 7)) |
((entry->len << 8) & BM(8, 14))) << pos;
link |= DCC_LINK_DESCRIPTOR;
if (pos) {
ret = dcc_sram_writel(drvdata,
link, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
link = 0;
}
prev_off = off + entry->len - 1;
prev_addr = addr;
}
}
}
if (link) {
ret = dcc_sram_writel(drvdata, link, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
}
if (loop_start) {
dev_err(drvdata->dev,
"DCC: Progamming error: Loop unterminated\n");
ret = -EINVAL;
goto err;
}
/* Handling special case of list ending with a rd_mod_wr */
if (addr == DCC_RD_MOD_WR_DESCRIPTOR) {
addr = (0xC105E) & BM(0, 27);
addr |= DCC_ADDR_DESCRIPTOR;
ret = dcc_sram_writel(drvdata, addr, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
}
/* Setting zero to indicate end of the list */
link = DCC_LINK_DESCRIPTOR;
ret = dcc_sram_writel(drvdata, link, sram_offset);
if (ret)
goto overstep;
sram_offset += 4;
/* Update ram_cfg and check if the data will overstep */
if (drvdata->data_sink[curr_list] == DCC_DATA_SINK_SRAM &&
drvdata->func_type[curr_list] == DCC_FUNC_TYPE_CAPTURE) {
drvdata->ram_cfg = (sram_offset + total_len) / 4;
if (sram_offset + total_len > drvdata->ram_size) {
sram_offset += total_len;
goto overstep;
}
} else {
drvdata->ram_cfg = sram_offset / 4;
if (sram_offset > drvdata->ram_size)
goto overstep;
}
drvdata->ram_start = sram_offset/4;
return 0;
overstep:
ret = -EINVAL;
dcc_sram_memset(drvdata->dev, drvdata->ram_base, 0, drvdata->ram_size);
dev_err(drvdata->dev, "list: %d, DCC SRAM oversteps, 0x%x (0x%x)\n",
curr_list, sram_offset, drvdata->ram_size);
err:
return ret;
}
static void __dcc_first_crc(struct dcc_drvdata *drvdata)
{
int i;
/*
* Need to send 2 triggers to DCC. First trigger sets CRC error status
* bit. So need second trigger to reset this bit.
*/
for (i = 0; i < 2; i++) {
if (!dcc_ready(drvdata))
dev_err(drvdata->dev, "DCC is not ready\n");
dcc_writel(drvdata, 1,
DCC_LL_SW_TRIGGER(drvdata->curr_list));
}
/* Clear CRC error interrupt */
dcc_writel(drvdata, BIT(1),
DCC_LL_INT_STATUS(drvdata->curr_list));
}
static int dcc_valid_list(struct dcc_drvdata *drvdata, int curr_list)
{
uint32_t lock_reg;
if (list_empty(&drvdata->cfg_head[curr_list]))
return -EINVAL;
if (drvdata->enable[curr_list]) {
dev_err(drvdata->dev, "List %d is already enabled\n",
curr_list);
return -EINVAL;
}
lock_reg = dcc_readl(drvdata, DCC_LL_LOCK(curr_list));
if (lock_reg & 0x1) {
dev_err(drvdata->dev, "List %d is already locked\n",
curr_list);
return -EINVAL;
}
dev_err(drvdata->dev, "DCC list passed %d\n", curr_list);
return 0;
}
static bool is_dcc_enabled(struct dcc_drvdata *drvdata)
{
bool dcc_enable = false;
int list;
for (list = 0; list < DCC_MAX_LINK_LIST; list++) {
if (drvdata->enable[list]) {
dcc_enable = true;
break;
}
}
return dcc_enable;
}
static void __dcc_config_reset(struct dcc_drvdata *drvdata)
{
struct dcc_config_entry *entry, *temp;
int curr_list;
for (curr_list = 0; curr_list < drvdata->nr_link_list; curr_list++) {
list_for_each_entry_safe(entry, temp,
&drvdata->cfg_head[curr_list], list) {
list_del(&entry->list);
devm_kfree(drvdata->dev, entry);
drvdata->nr_config[curr_list]--;
}
}
drvdata->ram_start = 0;
drvdata->ram_cfg = 0;
}
static void dcc_config_reset(struct dcc_drvdata *drvdata)
{
mutex_lock(&drvdata->mutex);
__dcc_config_reset(drvdata);
mutex_unlock(&drvdata->mutex);
}
static void __dcc_disable(struct dcc_drvdata *drvdata)
{
int curr_list;
if (!dcc_ready(drvdata))
dev_err(drvdata->dev, "DCC is not ready Disabling DCC...\n");
for (curr_list = 0; curr_list < drvdata->nr_link_list; curr_list++) {
if (!drvdata->enable[curr_list])
continue;
dcc_writel(drvdata, 0, DCC_LL_CFG(curr_list));
dcc_writel(drvdata, 0, DCC_LL_BASE(curr_list));
dcc_writel(drvdata, 0, DCC_FD_BASE(curr_list));
dcc_writel(drvdata, 0, DCC_LL_LOCK(curr_list));
drvdata->enable[curr_list] = false;
}
dcc_sram_memset(drvdata->dev, drvdata->ram_base, 0, drvdata->ram_size);
drvdata->ram_cfg = 0;
drvdata->ram_start = 0;
}
static void dcc_disable(struct dcc_drvdata *drvdata)
{
mutex_lock(&drvdata->mutex);
__dcc_disable(drvdata);
mutex_unlock(&drvdata->mutex);
}
static int dcc_enable(struct dcc_drvdata *drvdata)
{
int ret = 0;
int list;
uint32_t ram_cfg_base;
mutex_lock(&drvdata->mutex);
if (!is_dcc_enabled(drvdata)) {
dcc_sram_memset(drvdata->dev, drvdata->ram_base, 0xDE,
drvdata->ram_size);
}
for (list = 0; list < drvdata->nr_link_list; list++) {
if (dcc_valid_list(drvdata, list))
continue;
/* 1. Take ownership of the list */
dcc_writel(drvdata, BIT(0), DCC_LL_LOCK(list));
/* 2. Program linked-list in the SRAM */
ram_cfg_base = drvdata->ram_cfg;
ret = __dcc_ll_cfg(drvdata, list);
if (ret) {
dcc_writel(drvdata, 0, DCC_LL_LOCK(list));
dev_err(drvdata->dev, "DCC ram programming failed\n"
"Disable all links and reset all config\n");
__dcc_disable(drvdata);
__dcc_config_reset(drvdata);
goto err;
}
/* 3. program DCC_RAM_CFG reg */
dcc_writel(drvdata, ram_cfg_base +
drvdata->ram_offset/4, DCC_LL_BASE(list));
dcc_writel(drvdata, drvdata->ram_start +
drvdata->ram_offset/4, DCC_FD_BASE(list));
dcc_writel(drvdata, 0xFFF, DCC_LL_TIMEOUT(list));
/* 4. Clears interrupt status register */
dcc_writel(drvdata, 0, DCC_LL_INT_ENABLE(list));
dcc_writel(drvdata, (BIT(0) | BIT(1) | BIT(2)),
DCC_LL_INT_STATUS(list));
dev_info(drvdata->dev, "All values written to enable.\n");
/* Make sure all config is written in sram */
mb();
drvdata->enable[list] = true;
if (drvdata->func_type[list] == DCC_FUNC_TYPE_CRC) {
__dcc_first_crc(drvdata);
/* Enable CRC error interrupt */
if (!drvdata->interrupt_disable)
dcc_writel(drvdata, BIT(1),
DCC_LL_INT_ENABLE(list));
}
/* 5. Configure trigger */
dcc_writel(drvdata, BIT(9) | ((drvdata->cti_trig[list] << 8) |
(drvdata->data_sink[list] << 4) |
(drvdata->func_type[list])), DCC_LL_CFG(list));
}
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static ssize_t curr_list_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list == DCC_INVALID_LINK_LIST) {
dev_err(dev, "curr_list is not set.\n");
ret = -EINVAL;
goto err;
}
ret = scnprintf(buf, PAGE_SIZE, "%d\n", drvdata->curr_list);
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static ssize_t curr_list_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
unsigned long val;
uint32_t lock_reg;
bool dcc_enable = false;
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val >= drvdata->nr_link_list)
return -EINVAL;
mutex_lock(&drvdata->mutex);
dcc_enable = is_dcc_enabled(drvdata);
if (drvdata->curr_list != DCC_INVALID_LINK_LIST && dcc_enable) {
dev_err(drvdata->dev, "DCC is enabled, please disable it first.\n");
mutex_unlock(&drvdata->mutex);
return -EINVAL;
}
lock_reg = dcc_readl(drvdata, DCC_LL_LOCK(val));
if (lock_reg & 0x1) {
dev_err(drvdata->dev, "DCC linked list is already configured\n");
mutex_unlock(&drvdata->mutex);
return -EINVAL;
}
drvdata->curr_list = val;
mutex_unlock(&drvdata->mutex);
return size;
}
static DEVICE_ATTR_RW(curr_list);
static ssize_t func_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
ssize_t len = 0;
unsigned int i;
for (i = 0; i < drvdata->nr_link_list; i++)
len += scnprintf(buf + len, PAGE_SIZE - len, "%u :%s\n",
i, str_dcc_func_type[drvdata->func_type[i]]);
return len;
}
static ssize_t func_type_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
char str[10] = "";
int ret;
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%8s", str) != 1)
return -EINVAL;
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(dev,
"Select link list to program using curr_list\n");
ret = -EINVAL;
goto out;
}
if (drvdata->enable[drvdata->curr_list]) {
ret = -EBUSY;
goto out;
}
if (!strcmp(str, str_dcc_func_type[DCC_FUNC_TYPE_CAPTURE]))
drvdata->func_type[drvdata->curr_list] =
DCC_FUNC_TYPE_CAPTURE;
else if (!strcmp(str, str_dcc_func_type[DCC_FUNC_TYPE_CRC]))
drvdata->func_type[drvdata->curr_list] =
DCC_FUNC_TYPE_CRC;
else {
ret = -EINVAL;
goto out;
}
ret = size;
out:
mutex_unlock(&drvdata->mutex);
return ret;
}
static DEVICE_ATTR_RW(func_type);
static ssize_t data_sink_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
ssize_t len = 0;
unsigned int i;
for (i = 0; i < drvdata->nr_link_list; i++)
len += scnprintf(buf + len, PAGE_SIZE - len, "%u :%s\n",
i, str_dcc_data_sink[drvdata->data_sink[i]]);
return len;
}
static ssize_t data_sink_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
char str[10] = "";
int ret;
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%8s", str) != 1)
return -EINVAL;
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(dev,
"Select link list to program using curr_list\n");
ret = -EINVAL;
goto out;
}
if (drvdata->enable[drvdata->curr_list]) {
ret = -EBUSY;
goto out;
}
if (!strcmp(str, str_dcc_data_sink[DCC_DATA_SINK_SRAM]))
drvdata->data_sink[drvdata->curr_list] = DCC_DATA_SINK_SRAM;
else if (!strcmp(str, str_dcc_data_sink[DCC_DATA_SINK_ATB]))
drvdata->data_sink[drvdata->curr_list] = DCC_DATA_SINK_ATB;
else {
ret = -EINVAL;
goto out;
}
ret = size;
out:
mutex_unlock(&drvdata->mutex);
return ret;
}
static DEVICE_ATTR_RW(data_sink);
static ssize_t trigger_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret = 0;
unsigned long val;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val != 1)
return -EINVAL;
ret = dcc_sw_trigger(drvdata);
if (!ret)
ret = size;
return ret;
}
static DEVICE_ATTR_WO(trigger);
static ssize_t enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
bool dcc_enable = false;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(dev, "Select link list to program using curr_list\n");
ret = -EINVAL;
goto err;
}
dcc_enable = is_dcc_enabled(drvdata);
ret = scnprintf(buf, PAGE_SIZE, "%u\n",
(unsigned int)dcc_enable);
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static ssize_t enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret = 0;
unsigned long val;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val)
ret = dcc_enable(drvdata);
else
dcc_disable(drvdata);
if (!ret)
ret = size;
return ret;
}
static DEVICE_ATTR_RW(enable);
static ssize_t config_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
struct dcc_config_entry *entry;
char local_buf[64];
int len = 0, count = 0;
buf[0] = '\0';
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(dev, "Select link list to program using curr_list\n");
count = -EINVAL;
goto err;
}
list_for_each_entry(entry,
&drvdata->cfg_head[drvdata->curr_list], list) {
switch (entry->desc_type) {
case DCC_READ_WRITE_TYPE:
len = snprintf(local_buf, 64,
"Index: 0x%x, mask: 0x%x, val: 0x%x\n",
entry->index, entry->mask,
entry->write_val);
break;
case DCC_LOOP_TYPE:
len = snprintf(local_buf, 64, "Index: 0x%x, Loop: %d\n",
entry->index, entry->loop_cnt);
break;
case DCC_WRITE_TYPE:
len = snprintf(local_buf, 64,
"Write Index: 0x%x, Base: 0x%x, Offset: 0x%x, len: 0x%x APB: %d\n",
entry->index, entry->base,
entry->offset, entry->len,
entry->apb_bus);
break;
default:
len = snprintf(local_buf, 64,
"Read Index: 0x%x, Base: 0x%x, Offset: 0x%x, len: 0x%x APB: %d\n",
entry->index, entry->base,
entry->offset, entry->len,
entry->apb_bus);
}
if ((count + len) > PAGE_SIZE) {
dev_err(dev, "DCC: Couldn't write complete config\n");
break;
}
strlcat(buf, local_buf, PAGE_SIZE);
count += len;
}
err:
mutex_unlock(&drvdata->mutex);
return count;
}
static int dcc_config_add(struct dcc_drvdata *drvdata, unsigned int addr,
unsigned int len, int apb_bus)
{
int ret;
struct dcc_config_entry *entry, *pentry;
unsigned int base, offset;
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(drvdata->dev, "Select link list to program using curr_list\n");
ret = -EINVAL;
goto err;
}
/* Check the len to avoid allocate huge memory */
if (!len || len > (drvdata->ram_size / 8)) {
dev_err(drvdata->dev, "DCC: Invalid length\n");
ret = -EINVAL;
goto err;
}
base = addr & BM(4, 31);
if (!list_empty(&drvdata->cfg_head[drvdata->curr_list])) {
pentry = list_last_entry(&drvdata->cfg_head[drvdata->curr_list],
struct dcc_config_entry, list);
if (pentry->desc_type == DCC_ADDR_TYPE &&
addr >= (pentry->base + pentry->offset) &&
addr <= (pentry->base + pentry->offset + MAX_DCC_OFFSET)) {
/* Re-use base address from last entry */
base = pentry->base;
/*
* Check if new address is contiguous to last entry's
* addresses. If yes then we can re-use last entry and
* just need to update its length.
*/
if ((pentry->len * 4 + pentry->base + pentry->offset)
== addr) {
len += pentry->len;
/*
* Check if last entry can hold additional new
* length. If yes then we don't need to create
* a new entry else we need to add a new entry
* with same base but updated offset.
*/
if (len > MAX_DCC_LEN)
pentry->len = MAX_DCC_LEN;
else
pentry->len = len;
/*
* Update start addr and len for remaining
* addresses, which will be part of new
* entry.
*/
addr = pentry->base + pentry->offset +
pentry->len * 4;
len -= pentry->len;
}
}
}
offset = addr - base;
while (len) {
entry = devm_kzalloc(drvdata->dev, sizeof(*entry), GFP_KERNEL);
if (!entry) {
ret = -ENOMEM;
goto err;
}
entry->base = base;
entry->offset = offset;
entry->len = min_t(uint32_t, len, MAX_DCC_LEN);
entry->index = drvdata->nr_config[drvdata->curr_list]++;
entry->desc_type = DCC_ADDR_TYPE;
entry->apb_bus = apb_bus;
INIT_LIST_HEAD(&entry->list);
list_add_tail(&entry->list,
&drvdata->cfg_head[drvdata->curr_list]);
len -= entry->len;
offset += MAX_DCC_LEN * 4;
}
mutex_unlock(&drvdata->mutex);
return 0;
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static ssize_t config_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret, len, apb_bus;
unsigned int base;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
int nval;
nval = sscanf(buf, "%x %i %d", &base, &len, &apb_bus);
if (nval <= 0 || nval > 3)
return -EINVAL;
if (nval == 1) {
len = 1;
apb_bus = 0;
} else if (nval == 2) {
apb_bus = 0;
} else {
apb_bus = 1;
}
ret = dcc_config_add(drvdata, base, len, apb_bus);
if (ret)
return ret;
return size;
}
static DEVICE_ATTR_RW(config);
static ssize_t config_reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val)
dcc_config_reset(drvdata);
return size;
}
static DEVICE_ATTR_WO(config_reset);
static ssize_t crc_error_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(dev, "Select link list to program using curr_list\n");
ret = -EINVAL;
goto err;
}
if (!drvdata->enable[drvdata->curr_list]) {
ret = -EINVAL;
goto err;
}
ret = scnprintf(buf, PAGE_SIZE, "%u\n",
(unsigned int)BVAL(dcc_readl(
drvdata, DCC_LL_INT_STATUS(drvdata->curr_list)), 1));
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static DEVICE_ATTR_RO(crc_error);
static ssize_t ready_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(dev, "Select link list to program using curr_list\n");
ret = -EINVAL;
goto err;
}
if (!drvdata->enable[drvdata->curr_list]) {
ret = -EINVAL;
goto err;
}
ret = scnprintf(buf, PAGE_SIZE, "%u\n",
(unsigned int)BVAL(dcc_readl(drvdata, DCC_STATUS), 1));
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static DEVICE_ATTR_RO(ready);
static ssize_t interrupt_disable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%u\n",
(unsigned int)drvdata->interrupt_disable);
}
static ssize_t interrupt_disable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
mutex_lock(&drvdata->mutex);
drvdata->interrupt_disable = (val ? 1:0);
mutex_unlock(&drvdata->mutex);
return size;
}
static DEVICE_ATTR_RW(interrupt_disable);
static int dcc_add_loop(struct dcc_drvdata *drvdata, unsigned long loop_cnt)
{
struct dcc_config_entry *entry;
entry = devm_kzalloc(drvdata->dev, sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->loop_cnt = min_t(uint32_t, loop_cnt, MAX_LOOP_CNT);
entry->index = drvdata->nr_config[drvdata->curr_list]++;
entry->desc_type = DCC_LOOP_TYPE;
INIT_LIST_HEAD(&entry->list);
list_add_tail(&entry->list, &drvdata->cfg_head[drvdata->curr_list]);
return 0;
}
static ssize_t loop_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long loop_cnt;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
mutex_lock(&drvdata->mutex);
if (kstrtoul(buf, 16, &loop_cnt)) {
ret = -EINVAL;
goto err;
}
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(dev, "Select link list to program using curr_list\n");
ret = -EINVAL;
goto err;
}
ret = dcc_add_loop(drvdata, loop_cnt);
if (ret)
goto err;
mutex_unlock(&drvdata->mutex);
return size;
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static DEVICE_ATTR_WO(loop);
static int dcc_rd_mod_wr_add(struct dcc_drvdata *drvdata, unsigned int mask,
unsigned int val)
{
int ret = 0;
struct dcc_config_entry *entry;
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(drvdata->dev, "Select link list to program using curr_list\n");
ret = -EINVAL;
goto err;
}
if (list_empty(&drvdata->cfg_head[drvdata->curr_list])) {
dev_err(drvdata->dev, "DCC: No read address programmed\n");
ret = -EPERM;
goto err;
}
entry = devm_kzalloc(drvdata->dev, sizeof(*entry), GFP_KERNEL);
if (!entry) {
ret = -ENOMEM;
goto err;
}
entry->desc_type = DCC_READ_WRITE_TYPE;
entry->mask = mask;
entry->write_val = val;
entry->index = drvdata->nr_config[drvdata->curr_list]++;
INIT_LIST_HEAD(&entry->list);
list_add_tail(&entry->list, &drvdata->cfg_head[drvdata->curr_list]);
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static ssize_t rd_mod_wr_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
int nval;
unsigned int mask, val;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
nval = sscanf(buf, "%x %x", &mask, &val);
if (nval <= 1 || nval > 2)
return -EINVAL;
ret = dcc_rd_mod_wr_add(drvdata, mask, val);
if (ret)
return ret;
return size;
}
static DEVICE_ATTR_WO(rd_mod_wr);
static int dcc_add_write(struct dcc_drvdata *drvdata, unsigned int addr,
unsigned int write_val, int apb_bus)
{
struct dcc_config_entry *entry;
entry = devm_kzalloc(drvdata->dev, sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->desc_type = DCC_WRITE_TYPE;
entry->base = addr & BM(4, 31);
entry->offset = addr - entry->base;
entry->write_val = write_val;
entry->index = drvdata->nr_config[drvdata->curr_list]++;
entry->len = 1;
entry->apb_bus = apb_bus;
INIT_LIST_HEAD(&entry->list);
list_add_tail(&entry->list, &drvdata->cfg_head[drvdata->curr_list]);
return 0;
}
static ssize_t config_write_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
int nval;
unsigned int addr, write_val;
int apb_bus = 0;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
mutex_lock(&drvdata->mutex);
nval = sscanf(buf, "%x %x %d", &addr, &write_val, &apb_bus);
if (nval <= 1 || nval > 3) {
ret = -EINVAL;
goto err;
}
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(dev, "Select link list to program using curr_list\n");
ret = -EINVAL;
goto err;
}
if (nval == 3 && apb_bus != 0)
apb_bus = 1;
ret = dcc_add_write(drvdata, addr, write_val, apb_bus);
if (ret)
goto err;
mutex_unlock(&drvdata->mutex);
return size;
err:
mutex_unlock(&drvdata->mutex);
return ret;
}
static DEVICE_ATTR_WO(config_write);
static ssize_t cti_trig_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%d\n",
drvdata->cti_trig[drvdata->curr_list]);
}
static ssize_t cti_trig_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
int ret = 0;
struct dcc_drvdata *drvdata = dev_get_drvdata(dev);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
mutex_lock(&drvdata->mutex);
if (drvdata->curr_list >= drvdata->nr_link_list) {
dev_err(dev, "Select link list to program using curr_list\n");
ret = -EINVAL;
goto out;
}
if (drvdata->enable[drvdata->curr_list]) {
ret = -EBUSY;
goto out;
}
if (val)
drvdata->cti_trig[drvdata->curr_list] = 1;
else
drvdata->cti_trig[drvdata->curr_list] = 0;
ret = size;
out:
mutex_unlock(&drvdata->mutex);
return ret;
}
static DEVICE_ATTR_RW(cti_trig);
static const struct device_attribute *dcc_attrs[] = {
&dev_attr_func_type,
&dev_attr_data_sink,
&dev_attr_trigger,
&dev_attr_enable,
&dev_attr_config,
&dev_attr_config_reset,
&dev_attr_ready,
&dev_attr_crc_error,
&dev_attr_interrupt_disable,
&dev_attr_loop,
&dev_attr_rd_mod_wr,
&dev_attr_curr_list,
&dev_attr_config_write,
&dev_attr_cti_trig,
NULL,
};
static int dcc_create_files(struct device *dev,
const struct device_attribute **attrs)
{
int ret = 0, i;
for (i = 0; attrs[i] != NULL; i++) {
ret = device_create_file(dev, attrs[i]);
if (ret) {
dev_err(dev, "DCC: Couldn't create sysfs attribute: %s\n",
attrs[i]->attr.name);
break;
}
}
return ret;
}
static int dcc_sram_open(struct inode *inode, struct file *file)
{
struct dcc_drvdata *drvdata = container_of(inode->i_cdev,
struct dcc_drvdata,
sram_dev);
file->private_data = drvdata;
return 0;
}
static ssize_t dcc_sram_read(struct file *file, char __user *data,
size_t len, loff_t *ppos)
{
unsigned char *buf;
struct dcc_drvdata *drvdata = file->private_data;
int ret;
/* EOF check */
if (drvdata->ram_size <= *ppos)
return 0;
if ((*ppos + len) < len
|| (*ppos + len) > drvdata->ram_size)
len = (drvdata->ram_size - *ppos);
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = dcc_sram_memcpy(buf, (drvdata->ram_base + *ppos), len);
if (ret) {
dev_err(drvdata->dev,
"Target address or size not aligned with 4 bytes\n");
kfree(buf);
return ret;
}
if (copy_to_user(data, buf, len)) {
dev_err(drvdata->dev,
"DCC: Couldn't copy all data to user\n");
kfree(buf);
return -EFAULT;
}
*ppos += len;
kfree(buf);
return len;
}
static const struct file_operations dcc_sram_fops = {
.owner = THIS_MODULE,
.open = dcc_sram_open,
.read = dcc_sram_read,
.llseek = no_llseek,
};
static int dcc_sram_dev_register(struct dcc_drvdata *drvdata)
{
int ret;
struct device *device;
dev_t dev;
ret = alloc_chrdev_region(&dev, 0, 1, drvdata->sram_node);
if (ret)
goto err_alloc;
cdev_init(&drvdata->sram_dev, &dcc_sram_fops);
drvdata->sram_dev.owner = THIS_MODULE;
ret = cdev_add(&drvdata->sram_dev, dev, 1);
if (ret)
goto err_cdev_add;
drvdata->sram_class = class_create(THIS_MODULE,
drvdata->sram_node);
if (IS_ERR(drvdata->sram_class)) {
ret = PTR_ERR(drvdata->sram_class);
goto err_class_create;
}
device = device_create(drvdata->sram_class, NULL,
drvdata->sram_dev.dev, drvdata,
drvdata->sram_node);
if (IS_ERR(device)) {
ret = PTR_ERR(device);
goto err_dev_create;
}
return 0;
err_dev_create:
class_destroy(drvdata->sram_class);
err_class_create:
cdev_del(&drvdata->sram_dev);
err_cdev_add:
unregister_chrdev_region(drvdata->sram_dev.dev, 1);
err_alloc:
return ret;
}
static void dcc_sram_dev_deregister(struct dcc_drvdata *drvdata)
{
device_destroy(drvdata->sram_class, drvdata->sram_dev.dev);
class_destroy(drvdata->sram_class);
cdev_del(&drvdata->sram_dev);
unregister_chrdev_region(drvdata->sram_dev.dev, 1);
}
static int dcc_sram_dev_init(struct dcc_drvdata *drvdata)
{
int ret = 0;
size_t node_size;
char *node_name = "dcc_sram";
struct device *dev = drvdata->dev;
node_size = strlen(node_name) + 1;
drvdata->sram_node = devm_kzalloc(dev, node_size, GFP_KERNEL);
if (!drvdata->sram_node)
return -ENOMEM;
strlcpy(drvdata->sram_node, node_name, node_size);
ret = dcc_sram_dev_register(drvdata);
if (ret)
dev_err(drvdata->dev, "DCC: sram node not registered.\n");
return ret;
}
static void dcc_sram_dev_exit(struct dcc_drvdata *drvdata)
{
dcc_sram_dev_deregister(drvdata);
}
static int dcc_dt_parse(struct dcc_drvdata *drvdata, struct device_node *np)
{
int i, ret = -1;
const __be32 *prop;
uint32_t len, entry, val1, val2, apb_bus;
uint32_t curr_link_list;
const char *data_sink;
ret = of_property_read_u32(np, "qcom,curr-link-list",
&curr_link_list);
if (ret)
return ret;
if (curr_link_list >= drvdata->nr_link_list) {
dev_err(drvdata->dev, "List configuration failed.\n");
return ret;
}
drvdata->curr_list = curr_link_list;
drvdata->data_sink[curr_link_list] = DCC_DATA_SINK_SRAM;
ret = of_property_read_string(np, "qcom,data-sink",
&data_sink);
if (!ret) {
for (i = 0; i < ARRAY_SIZE(str_dcc_data_sink); i++)
if (!strcmp(data_sink, str_dcc_data_sink[i])) {
drvdata->data_sink[curr_link_list] = i;
break;
}
if (i == ARRAY_SIZE(str_dcc_data_sink)) {
dev_err(drvdata->dev, "Unknown sink type for DCC Using '%s' as data sink\n",
str_dcc_data_sink[drvdata->data_sink[curr_link_list]]);
}
}
prop = of_get_property(np, "qcom,link-list", &len);
if (prop) {
len /= sizeof(__be32);
i = 0;
while (i < len) {
entry = be32_to_cpu(prop[i++]);
val1 = be32_to_cpu(prop[i++]);
val2 = be32_to_cpu(prop[i++]);
apb_bus = be32_to_cpu(prop[i++]);
switch (entry) {
case DCC_READ:
ret = dcc_config_add(drvdata, val1,
val2, apb_bus);
break;
case DCC_READ_WRITE:
ret = dcc_rd_mod_wr_add(drvdata, val1,
val2);
break;
case DCC_WRITE:
ret = dcc_add_write(drvdata, val1,
val2, apb_bus);
break;
case DCC_LOOP:
ret = dcc_add_loop(drvdata, val1);
break;
default:
ret = -EINVAL;
}
if (ret) {
dev_err(drvdata->dev,
"DCC init time config failed err:%d\n",
ret);
break;
}
}
}
return ret;
}
static void dcc_configure_list(struct dcc_drvdata *drvdata,
struct device_node *np)
{
int ret = -1;
struct device_node *link_node = NULL;
for_each_available_child_of_node(np, link_node) {
ret = dcc_dt_parse(drvdata, link_node);
if (ret) {
dev_err(drvdata->dev,
"DCC link list config failed err:%d\n", ret);
break;
}
}
if (ret == -1)
ret = dcc_dt_parse(drvdata, np);
if (!ret)
dcc_enable(drvdata);
}
static int dcc_probe(struct platform_device *pdev)
{
int ret, i;
struct device *dev = &pdev->dev;
struct dcc_drvdata *drvdata;
struct resource *res;
struct md_region md_entry;
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->dev = &pdev->dev;
platform_set_drvdata(pdev, drvdata);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dcc-base");
if (!res)
return -EINVAL;
drvdata->reg_size = resource_size(res);
drvdata->base = devm_ioremap(dev, res->start, resource_size(res));
if (!drvdata->base)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"dcc-ram-base");
if (!res)
return -EINVAL;
drvdata->ram_size = resource_size(res);
drvdata->ram_base = devm_ioremap(dev, res->start, resource_size(res));
if (!drvdata->ram_base)
return -ENOMEM;
ret = of_property_read_u32(pdev->dev.of_node, "dcc-ram-offset",
&drvdata->ram_offset);
if (ret)
return -EINVAL;
if ((dcc_readl(drvdata, DCC_HW_INFO) & 0x3F) == 0x3F) {
drvdata->memory_map2 = true;
drvdata->nr_link_list = dcc_readl(drvdata, DCC_LL_NUM_INFO);
if (drvdata->nr_link_list == 0)
return -EINVAL;
} else {
drvdata->memory_map2 = false;
drvdata->nr_link_list = DCC_MAX_LINK_LIST;
}
if ((dcc_readl(drvdata, DCC_HW_INFO) & BIT(6)) == BIT(6))
drvdata->loopoff = DCC_FIX_LOOP_OFFSET;
else
drvdata->loopoff = get_bitmask_order((drvdata->ram_size +
drvdata->ram_offset) / 4 - 1);
mutex_init(&drvdata->mutex);
drvdata->data_sink = devm_kzalloc(dev, drvdata->nr_link_list *
sizeof(enum dcc_data_sink), GFP_KERNEL);
if (!drvdata->data_sink)
return -ENOMEM;
drvdata->func_type = devm_kzalloc(dev, drvdata->nr_link_list *
sizeof(enum dcc_func_type), GFP_KERNEL);
if (!drvdata->func_type)
return -ENOMEM;
drvdata->enable = devm_kzalloc(dev, drvdata->nr_link_list *
sizeof(bool), GFP_KERNEL);
if (!drvdata->enable)
return -ENOMEM;
drvdata->configured = devm_kzalloc(dev, drvdata->nr_link_list *
sizeof(bool), GFP_KERNEL);
if (!drvdata->configured)
return -ENOMEM;
drvdata->nr_config = devm_kzalloc(dev, drvdata->nr_link_list *
sizeof(uint32_t), GFP_KERNEL);
if (!drvdata->nr_config)
return -ENOMEM;
drvdata->cti_trig = devm_kzalloc(dev, drvdata->nr_link_list *
sizeof(uint8_t), GFP_KERNEL);
if (!drvdata->cti_trig)
return -ENOMEM;
drvdata->cfg_head = devm_kzalloc(dev, drvdata->nr_link_list *
sizeof(struct list_head), GFP_KERNEL);
if (!drvdata->cfg_head)
return -ENOMEM;
for (i = 0; i < drvdata->nr_link_list; i++) {
INIT_LIST_HEAD(&drvdata->cfg_head[i]);
drvdata->nr_config[i] = 0;
}
dcc_sram_memset(drvdata->dev, drvdata->ram_base, 0, drvdata->ram_size);
drvdata->curr_list = DCC_INVALID_LINK_LIST;
ret = dcc_sram_dev_init(drvdata);
if (ret)
goto err;
ret = dcc_create_files(dev, dcc_attrs);
if (ret)
goto err;
dcc_configure_list(drvdata, pdev->dev.of_node);
/* Add dcc info to minidump table */
strlcpy(md_entry.name, "KDCCDATA", sizeof(md_entry.name));
md_entry.virt_addr = (uintptr_t)drvdata->ram_base;
md_entry.phys_addr = res->start;
md_entry.size = drvdata->ram_size;
if (msm_minidump_add_region(&md_entry))
dev_err(drvdata->dev, "Failed to add DCC data in Minidump\n");
return 0;
err:
return ret;
}
static int dcc_remove(struct platform_device *pdev)
{
struct dcc_drvdata *drvdata = platform_get_drvdata(pdev);
dcc_sram_dev_exit(drvdata);
dcc_config_reset(drvdata);
return 0;
}
static const struct of_device_id msm_dcc_match[] = {
{ .compatible = "qcom,dcc-v2"},
{}
};
static struct platform_driver dcc_driver = {
.probe = dcc_probe,
.remove = dcc_remove,
.driver = {
.name = "msm-dcc",
.of_match_table = msm_dcc_match,
},
};
static int __init dcc_init(void)
{
return platform_driver_register(&dcc_driver);
}
pure_initcall(dcc_init);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM data capture and compare engine");