android_kernel_xiaomi_sm7250/block/blk-crypto-fallback.c
Eric Biggers b32863f17f ANDROID: dm: add dm-default-key target for metadata encryption
Add a device-mapper target "dm-default-key" which assigns an encryption
key to bios that aren't for the contents of an encrypted file.

This ensures that all blocks on-disk will be encrypted with some key,
without the performance hit of file contents being encrypted twice when
fscrypt (File-Based Encryption) is used.

It is only appropriate to use dm-default-key when key configuration is
tightly controlled, like it is in Android, such that all fscrypt keys
are at least as hard to compromise as the default key.

Compared to the original version of dm-default-key, this has been
modified to use the new vendor-independent inline encryption framework
(which works even when no inline encryption hardware is present), the
table syntax has been changed to match dm-crypt, and support for
specifying Adiantum encryption has been added.  These changes also mean
that dm-default-key now always explicitly specifies the DUN (the IV).

Also, to handle f2fs moving blocks of encrypted files around without the
key, and to handle ext4 and f2fs filesystems mounted without
'-o inlinecrypt', the mapping logic is no longer "set a key on the bio
if it doesn't have one already", but rather "set a key on the bio unless
the bio has the bi_skip_dm_default_key flag set".  Filesystems set this
flag on *all* bios for encrypted file contents, regardless of whether
they are encrypting/decrypting the file using inline encryption or the
traditional filesystem-layer encryption, or moving the raw data.

For the bi_skip_dm_default_key flag, a new field in struct bio is used
rather than a bit in bi_opf so that fscrypt_set_bio_crypt_ctx() can set
the flag, minimizing the changes needed to filesystems.  (bi_opf is
usually overwritten after fscrypt_set_bio_crypt_ctx() is called.)

Bug: 137270441
Bug: 147814592
Change-Id: I69c9cd1e968ccf990e4ad96e5115b662237f5095
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-24 10:49:09 -08:00

651 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
*/
/*
* Refer to Documentation/block/inline-encryption.rst for detailed explanation.
*/
#define pr_fmt(fmt) "blk-crypto-fallback: " fmt
#include <crypto/skcipher.h>
#include <linux/blk-cgroup.h>
#include <linux/blk-crypto.h>
#include <linux/crypto.h>
#include <linux/keyslot-manager.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/random.h>
#include "blk-crypto-internal.h"
static unsigned int num_prealloc_bounce_pg = 32;
module_param(num_prealloc_bounce_pg, uint, 0);
MODULE_PARM_DESC(num_prealloc_bounce_pg,
"Number of preallocated bounce pages for the blk-crypto crypto API fallback");
static unsigned int blk_crypto_num_keyslots = 100;
module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
MODULE_PARM_DESC(num_keyslots,
"Number of keyslots for the blk-crypto crypto API fallback");
static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
"Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
struct bio_fallback_crypt_ctx {
struct bio_crypt_ctx crypt_ctx;
/*
* Copy of the bvec_iter when this bio was submitted.
* We only want to en/decrypt the part of the bio as described by the
* bvec_iter upon submission because bio might be split before being
* resubmitted
*/
struct bvec_iter crypt_iter;
u64 fallback_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
};
/* The following few vars are only used during the crypto API fallback */
static struct kmem_cache *bio_fallback_crypt_ctx_cache;
static mempool_t *bio_fallback_crypt_ctx_pool;
/*
* Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
* all of a mode's tfms when that mode starts being used. Since each mode may
* need all the keyslots at some point, each mode needs its own tfm for each
* keyslot; thus, a keyslot may contain tfms for multiple modes. However, to
* match the behavior of real inline encryption hardware (which only supports a
* single encryption context per keyslot), we only allow one tfm per keyslot to
* be used at a time - the rest of the unused tfms have their keys cleared.
*/
static DEFINE_MUTEX(tfms_init_lock);
static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
struct blk_crypto_decrypt_work {
struct work_struct work;
struct bio *bio;
};
static struct blk_crypto_keyslot {
struct crypto_skcipher *tfm;
enum blk_crypto_mode_num crypto_mode;
struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
} *blk_crypto_keyslots;
/* The following few vars are only used during the crypto API fallback */
static struct keyslot_manager *blk_crypto_ksm;
static struct workqueue_struct *blk_crypto_wq;
static mempool_t *blk_crypto_bounce_page_pool;
static struct kmem_cache *blk_crypto_decrypt_work_cache;
bool bio_crypt_fallback_crypted(const struct bio_crypt_ctx *bc)
{
return bc && bc->bc_ksm == blk_crypto_ksm;
}
/*
* This is the key we set when evicting a keyslot. This *should* be the all 0's
* key, but AES-XTS rejects that key, so we use some random bytes instead.
*/
static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
static void blk_crypto_evict_keyslot(unsigned int slot)
{
struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
int err;
WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
/* Clear the key in the skcipher */
err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
blk_crypto_modes[crypto_mode].keysize);
WARN_ON(err);
slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
}
static int blk_crypto_keyslot_program(struct keyslot_manager *ksm,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
const enum blk_crypto_mode_num crypto_mode = key->crypto_mode;
int err;
if (crypto_mode != slotp->crypto_mode &&
slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID) {
blk_crypto_evict_keyslot(slot);
}
if (!slotp->tfms[crypto_mode])
return -ENOMEM;
slotp->crypto_mode = crypto_mode;
err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
key->size);
if (err) {
blk_crypto_evict_keyslot(slot);
return err;
}
return 0;
}
static int blk_crypto_keyslot_evict(struct keyslot_manager *ksm,
const struct blk_crypto_key *key,
unsigned int slot)
{
blk_crypto_evict_keyslot(slot);
return 0;
}
/*
* The crypto API fallback KSM ops - only used for a bio when it specifies a
* blk_crypto_mode for which we failed to get a keyslot in the device's inline
* encryption hardware (which probably means the device doesn't have inline
* encryption hardware that supports that crypto mode).
*/
static const struct keyslot_mgmt_ll_ops blk_crypto_ksm_ll_ops = {
.keyslot_program = blk_crypto_keyslot_program,
.keyslot_evict = blk_crypto_keyslot_evict,
};
static void blk_crypto_encrypt_endio(struct bio *enc_bio)
{
struct bio *src_bio = enc_bio->bi_private;
int i;
for (i = 0; i < enc_bio->bi_vcnt; i++)
mempool_free(enc_bio->bi_io_vec[i].bv_page,
blk_crypto_bounce_page_pool);
src_bio->bi_status = enc_bio->bi_status;
bio_put(enc_bio);
bio_endio(src_bio);
}
static struct bio *blk_crypto_clone_bio(struct bio *bio_src)
{
struct bvec_iter iter;
struct bio_vec bv;
struct bio *bio;
bio = bio_alloc_bioset(GFP_NOIO, bio_segments(bio_src), NULL);
if (!bio)
return NULL;
bio->bi_disk = bio_src->bi_disk;
bio->bi_opf = bio_src->bi_opf;
bio->bi_ioprio = bio_src->bi_ioprio;
bio->bi_write_hint = bio_src->bi_write_hint;
bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
bio_for_each_segment(bv, bio_src, iter)
bio->bi_io_vec[bio->bi_vcnt++] = bv;
if (bio_integrity(bio_src) &&
bio_integrity_clone(bio, bio_src, GFP_NOIO) < 0) {
bio_put(bio);
return NULL;
}
bio_clone_blkcg_association(bio, bio_src);
bio_clone_skip_dm_default_key(bio, bio_src);
return bio;
}
static int blk_crypto_alloc_cipher_req(struct bio *src_bio,
struct skcipher_request **ciph_req_ret,
struct crypto_wait *wait)
{
struct skcipher_request *ciph_req;
const struct blk_crypto_keyslot *slotp;
slotp = &blk_crypto_keyslots[src_bio->bi_crypt_context->bc_keyslot];
ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
GFP_NOIO);
if (!ciph_req) {
src_bio->bi_status = BLK_STS_RESOURCE;
return -ENOMEM;
}
skcipher_request_set_callback(ciph_req,
CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, wait);
*ciph_req_ret = ciph_req;
return 0;
}
static int blk_crypto_split_bio_if_needed(struct bio **bio_ptr)
{
struct bio *bio = *bio_ptr;
unsigned int i = 0;
unsigned int num_sectors = 0;
struct bio_vec bv;
struct bvec_iter iter;
bio_for_each_segment(bv, bio, iter) {
num_sectors += bv.bv_len >> SECTOR_SHIFT;
if (++i == BIO_MAX_PAGES)
break;
}
if (num_sectors < bio_sectors(bio)) {
struct bio *split_bio;
split_bio = bio_split(bio, num_sectors, GFP_NOIO, NULL);
if (!split_bio) {
bio->bi_status = BLK_STS_RESOURCE;
return -ENOMEM;
}
bio_chain(split_bio, bio);
generic_make_request(bio);
*bio_ptr = split_bio;
}
return 0;
}
union blk_crypto_iv {
__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
};
static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
union blk_crypto_iv *iv)
{
int i;
for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
iv->dun[i] = cpu_to_le64(dun[i]);
}
/*
* The crypto API fallback's encryption routine.
* Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
* and replace *bio_ptr with the bounce bio. May split input bio if it's too
* large.
*/
static int blk_crypto_encrypt_bio(struct bio **bio_ptr)
{
struct bio *src_bio;
struct skcipher_request *ciph_req = NULL;
DECLARE_CRYPTO_WAIT(wait);
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
union blk_crypto_iv iv;
struct scatterlist src, dst;
struct bio *enc_bio;
unsigned int i, j;
int data_unit_size;
struct bio_crypt_ctx *bc;
int err = 0;
/* Split the bio if it's too big for single page bvec */
err = blk_crypto_split_bio_if_needed(bio_ptr);
if (err)
return err;
src_bio = *bio_ptr;
bc = src_bio->bi_crypt_context;
data_unit_size = bc->bc_key->data_unit_size;
/* Allocate bounce bio for encryption */
enc_bio = blk_crypto_clone_bio(src_bio);
if (!enc_bio) {
src_bio->bi_status = BLK_STS_RESOURCE;
return -ENOMEM;
}
/*
* Use the crypto API fallback keyslot manager to get a crypto_skcipher
* for the algorithm and key specified for this bio.
*/
err = bio_crypt_ctx_acquire_keyslot(bc, blk_crypto_ksm);
if (err) {
src_bio->bi_status = BLK_STS_IOERR;
goto out_put_enc_bio;
}
/* and then allocate an skcipher_request for it */
err = blk_crypto_alloc_cipher_req(src_bio, &ciph_req, &wait);
if (err)
goto out_release_keyslot;
memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
sg_init_table(&src, 1);
sg_init_table(&dst, 1);
skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
iv.bytes);
/* Encrypt each page in the bounce bio */
for (i = 0; i < enc_bio->bi_vcnt; i++) {
struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
struct page *plaintext_page = enc_bvec->bv_page;
struct page *ciphertext_page =
mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
enc_bvec->bv_page = ciphertext_page;
if (!ciphertext_page) {
src_bio->bi_status = BLK_STS_RESOURCE;
err = -ENOMEM;
goto out_free_bounce_pages;
}
sg_set_page(&src, plaintext_page, data_unit_size,
enc_bvec->bv_offset);
sg_set_page(&dst, ciphertext_page, data_unit_size,
enc_bvec->bv_offset);
/* Encrypt each data unit in this page */
for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
blk_crypto_dun_to_iv(curr_dun, &iv);
err = crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
&wait);
if (err) {
i++;
src_bio->bi_status = BLK_STS_RESOURCE;
goto out_free_bounce_pages;
}
bio_crypt_dun_increment(curr_dun, 1);
src.offset += data_unit_size;
dst.offset += data_unit_size;
}
}
enc_bio->bi_private = src_bio;
enc_bio->bi_end_io = blk_crypto_encrypt_endio;
*bio_ptr = enc_bio;
enc_bio = NULL;
err = 0;
goto out_free_ciph_req;
out_free_bounce_pages:
while (i > 0)
mempool_free(enc_bio->bi_io_vec[--i].bv_page,
blk_crypto_bounce_page_pool);
out_free_ciph_req:
skcipher_request_free(ciph_req);
out_release_keyslot:
bio_crypt_ctx_release_keyslot(bc);
out_put_enc_bio:
if (enc_bio)
bio_put(enc_bio);
return err;
}
static void blk_crypto_free_fallback_crypt_ctx(struct bio *bio)
{
mempool_free(container_of(bio->bi_crypt_context,
struct bio_fallback_crypt_ctx,
crypt_ctx),
bio_fallback_crypt_ctx_pool);
bio->bi_crypt_context = NULL;
}
/*
* The crypto API fallback's main decryption routine.
* Decrypts input bio in place.
*/
static void blk_crypto_decrypt_bio(struct work_struct *work)
{
struct blk_crypto_decrypt_work *decrypt_work =
container_of(work, struct blk_crypto_decrypt_work, work);
struct bio *bio = decrypt_work->bio;
struct skcipher_request *ciph_req = NULL;
DECLARE_CRYPTO_WAIT(wait);
struct bio_vec bv;
struct bvec_iter iter;
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
union blk_crypto_iv iv;
struct scatterlist sg;
struct bio_crypt_ctx *bc = bio->bi_crypt_context;
struct bio_fallback_crypt_ctx *f_ctx =
container_of(bc, struct bio_fallback_crypt_ctx, crypt_ctx);
const int data_unit_size = bc->bc_key->data_unit_size;
unsigned int i;
int err;
/*
* Use the crypto API fallback keyslot manager to get a crypto_skcipher
* for the algorithm and key specified for this bio.
*/
if (bio_crypt_ctx_acquire_keyslot(bc, blk_crypto_ksm)) {
bio->bi_status = BLK_STS_RESOURCE;
goto out_no_keyslot;
}
/* and then allocate an skcipher_request for it */
err = blk_crypto_alloc_cipher_req(bio, &ciph_req, &wait);
if (err)
goto out;
memcpy(curr_dun, f_ctx->fallback_dun, sizeof(curr_dun));
sg_init_table(&sg, 1);
skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
iv.bytes);
/* Decrypt each segment in the bio */
__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
struct page *page = bv.bv_page;
sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
/* Decrypt each data unit in the segment */
for (i = 0; i < bv.bv_len; i += data_unit_size) {
blk_crypto_dun_to_iv(curr_dun, &iv);
if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
&wait)) {
bio->bi_status = BLK_STS_IOERR;
goto out;
}
bio_crypt_dun_increment(curr_dun, 1);
sg.offset += data_unit_size;
}
}
out:
skcipher_request_free(ciph_req);
bio_crypt_ctx_release_keyslot(bc);
out_no_keyslot:
kmem_cache_free(blk_crypto_decrypt_work_cache, decrypt_work);
blk_crypto_free_fallback_crypt_ctx(bio);
bio_endio(bio);
}
/*
* Queue bio for decryption.
* Returns true iff bio was queued for decryption.
*/
bool blk_crypto_queue_decrypt_bio(struct bio *bio)
{
struct blk_crypto_decrypt_work *decrypt_work;
/* If there was an IO error, don't queue for decrypt. */
if (bio->bi_status)
goto out;
decrypt_work = kmem_cache_zalloc(blk_crypto_decrypt_work_cache,
GFP_ATOMIC);
if (!decrypt_work) {
bio->bi_status = BLK_STS_RESOURCE;
goto out;
}
INIT_WORK(&decrypt_work->work, blk_crypto_decrypt_bio);
decrypt_work->bio = bio;
queue_work(blk_crypto_wq, &decrypt_work->work);
return true;
out:
blk_crypto_free_fallback_crypt_ctx(bio);
return false;
}
/**
* blk_crypto_start_using_mode() - Start using a crypto algorithm on a device
* @mode_num: the blk_crypto_mode we want to allocate ciphers for.
* @data_unit_size: the data unit size that will be used
* @q: the request queue for the device
*
* Upper layers must call this function to ensure that a the crypto API fallback
* has transforms for this algorithm, if they become necessary.
*
* Return: 0 on success and -err on error.
*/
int blk_crypto_start_using_mode(enum blk_crypto_mode_num mode_num,
unsigned int data_unit_size,
struct request_queue *q)
{
struct blk_crypto_keyslot *slotp;
unsigned int i;
int err = 0;
/*
* Fast path
* Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
* for each i are visible before we try to access them.
*/
if (likely(smp_load_acquire(&tfms_inited[mode_num])))
return 0;
/*
* If the keyslot manager of the request queue supports this
* crypto mode, then we don't need to allocate this mode.
*/
if (keyslot_manager_crypto_mode_supported(q->ksm, mode_num,
data_unit_size))
return 0;
mutex_lock(&tfms_init_lock);
if (likely(tfms_inited[mode_num]))
goto out;
for (i = 0; i < blk_crypto_num_keyslots; i++) {
slotp = &blk_crypto_keyslots[i];
slotp->tfms[mode_num] = crypto_alloc_skcipher(
blk_crypto_modes[mode_num].cipher_str,
0, 0);
if (IS_ERR(slotp->tfms[mode_num])) {
err = PTR_ERR(slotp->tfms[mode_num]);
slotp->tfms[mode_num] = NULL;
goto out_free_tfms;
}
crypto_skcipher_set_flags(slotp->tfms[mode_num],
CRYPTO_TFM_REQ_WEAK_KEY);
}
/*
* Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
* for each i are visible before we set tfms_inited[mode_num].
*/
smp_store_release(&tfms_inited[mode_num], true);
goto out;
out_free_tfms:
for (i = 0; i < blk_crypto_num_keyslots; i++) {
slotp = &blk_crypto_keyslots[i];
crypto_free_skcipher(slotp->tfms[mode_num]);
slotp->tfms[mode_num] = NULL;
}
out:
mutex_unlock(&tfms_init_lock);
return err;
}
EXPORT_SYMBOL_GPL(blk_crypto_start_using_mode);
int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
{
return keyslot_manager_evict_key(blk_crypto_ksm, key);
}
int blk_crypto_fallback_submit_bio(struct bio **bio_ptr)
{
struct bio *bio = *bio_ptr;
struct bio_crypt_ctx *bc = bio->bi_crypt_context;
struct bio_fallback_crypt_ctx *f_ctx;
if (!tfms_inited[bc->bc_key->crypto_mode]) {
bio->bi_status = BLK_STS_IOERR;
return -EIO;
}
if (bio_data_dir(bio) == WRITE)
return blk_crypto_encrypt_bio(bio_ptr);
/*
* Mark bio as fallback crypted and replace the bio_crypt_ctx with
* another one contained in a bio_fallback_crypt_ctx, so that the
* fallback has space to store the info it needs for decryption.
*/
bc->bc_ksm = blk_crypto_ksm;
f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
f_ctx->crypt_ctx = *bc;
memcpy(f_ctx->fallback_dun, bc->bc_dun, sizeof(f_ctx->fallback_dun));
f_ctx->crypt_iter = bio->bi_iter;
bio_crypt_free_ctx(bio);
bio->bi_crypt_context = &f_ctx->crypt_ctx;
return 0;
}
int __init blk_crypto_fallback_init(void)
{
int i;
unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX];
prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
/* All blk-crypto modes have a crypto API fallback. */
for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
crypto_mode_supported[i] = 0xFFFFFFFF;
crypto_mode_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
blk_crypto_ksm = keyslot_manager_create(blk_crypto_num_keyslots,
&blk_crypto_ksm_ll_ops,
crypto_mode_supported, NULL);
if (!blk_crypto_ksm)
return -ENOMEM;
blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
WQ_UNBOUND | WQ_HIGHPRI |
WQ_MEM_RECLAIM, num_online_cpus());
if (!blk_crypto_wq)
return -ENOMEM;
blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
sizeof(blk_crypto_keyslots[0]),
GFP_KERNEL);
if (!blk_crypto_keyslots)
return -ENOMEM;
blk_crypto_bounce_page_pool =
mempool_create_page_pool(num_prealloc_bounce_pg, 0);
if (!blk_crypto_bounce_page_pool)
return -ENOMEM;
blk_crypto_decrypt_work_cache = KMEM_CACHE(blk_crypto_decrypt_work,
SLAB_RECLAIM_ACCOUNT);
if (!blk_crypto_decrypt_work_cache)
return -ENOMEM;
bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
if (!bio_fallback_crypt_ctx_cache)
return -ENOMEM;
bio_fallback_crypt_ctx_pool =
mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
bio_fallback_crypt_ctx_cache);
if (!bio_fallback_crypt_ctx_pool)
return -ENOMEM;
return 0;
}