android_kernel_xiaomi_sm7250/block/keyslot-manager.c
Eric Biggers eca18da8a2 ANDROID: block: backport the ability to specify max_dun_bytes
Backport a fix from the v7 inline crypto patchset which ensures that the
block layer knows the number of DUN bytes the inline encryption hardware
supports, so that hardware isn't used when it shouldn't be.

(This unfortunately means introducing some increasing long argument
lists; this was all already fixed up in later versions of the patchset.)

To avoid breaking the KMI for drivers, don't add a dun_bytes argument to
keyslot_manager_create() but rather allow drivers to call
keyslot_manager_set_max_dun_bytes() to override the default.  Also,
don't add dun_bytes as a new field in 'struct blk_crypto_key' but rather
pack it into the existing 'hash' field which is for block layer use.

Bug: 144046242
Bug: 153512828
Change-Id: I285f36557fb3eafc5f2f64727ef1740938b59dd7
Signed-off-by: Eric Biggers <ebiggers@google.com>
Git-commit: 5da8f890a9
Git-repo: https://android.googlesource.com/kernel/common/+/refs/heads/android-4.19
[neersoni@codeaurora.org: back port the changes]
Signed-off-by: Neeraj Soni <neersoni@codeaurora.org>
2020-07-19 14:32:24 +05:30

664 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
*/
/**
* DOC: The Keyslot Manager
*
* Many devices with inline encryption support have a limited number of "slots"
* into which encryption contexts may be programmed, and requests can be tagged
* with a slot number to specify the key to use for en/decryption.
*
* As the number of slots are limited, and programming keys is expensive on
* many inline encryption hardware, we don't want to program the same key into
* multiple slots - if multiple requests are using the same key, we want to
* program just one slot with that key and use that slot for all requests.
*
* The keyslot manager manages these keyslots appropriately, and also acts as
* an abstraction between the inline encryption hardware and the upper layers.
*
* Lower layer devices will set up a keyslot manager in their request queue
* and tell it how to perform device specific operations like programming/
* evicting keys from keyslots.
*
* Upper layers will call keyslot_manager_get_slot_for_key() to program a
* key into some slot in the inline encryption hardware.
*/
#include <crypto/algapi.h>
#include <linux/keyslot-manager.h>
#include <linux/atomic.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/wait.h>
#include <linux/blkdev.h>
struct keyslot {
atomic_t slot_refs;
struct list_head idle_slot_node;
struct hlist_node hash_node;
struct blk_crypto_key key;
};
struct keyslot_manager {
unsigned int num_slots;
struct keyslot_mgmt_ll_ops ksm_ll_ops;
unsigned int features;
unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX];
unsigned int max_dun_bytes_supported;
void *ll_priv_data;
#ifdef CONFIG_PM
/* Device for runtime power management (NULL if none) */
struct device *dev;
#endif
/* Protects programming and evicting keys from the device */
struct rw_semaphore lock;
/* List of idle slots, with least recently used slot at front */
wait_queue_head_t idle_slots_wait_queue;
struct list_head idle_slots;
spinlock_t idle_slots_lock;
/*
* Hash table which maps key hashes to keyslots, so that we can find a
* key's keyslot in O(1) time rather than O(num_slots). Protected by
* 'lock'. A cryptographic hash function is used so that timing attacks
* can't leak information about the raw keys.
*/
struct hlist_head *slot_hashtable;
unsigned int slot_hashtable_size;
/* Per-keyslot data */
struct keyslot slots[];
};
static inline bool keyslot_manager_is_passthrough(struct keyslot_manager *ksm)
{
return ksm->num_slots == 0;
}
#ifdef CONFIG_PM
static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
struct device *dev)
{
ksm->dev = dev;
}
/* If there's an underlying device and it's suspended, resume it. */
static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
{
if (ksm->dev)
pm_runtime_get_sync(ksm->dev);
}
static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
{
if (ksm->dev)
pm_runtime_put_sync(ksm->dev);
}
#else /* CONFIG_PM */
static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
struct device *dev)
{
}
static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
{
}
static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
{
}
#endif /* !CONFIG_PM */
static inline void keyslot_manager_hw_enter(struct keyslot_manager *ksm)
{
/*
* Calling into the driver requires ksm->lock held and the device
* resumed. But we must resume the device first, since that can acquire
* and release ksm->lock via keyslot_manager_reprogram_all_keys().
*/
keyslot_manager_pm_get(ksm);
down_write(&ksm->lock);
}
static inline void keyslot_manager_hw_exit(struct keyslot_manager *ksm)
{
up_write(&ksm->lock);
keyslot_manager_pm_put(ksm);
}
/**
* keyslot_manager_create() - Create a keyslot manager
* @dev: Device for runtime power management (NULL if none)
* @num_slots: The number of key slots to manage.
* @ksm_ll_ops: The struct keyslot_mgmt_ll_ops for the device that this keyslot
* manager will use to perform operations like programming and
* evicting keys.
* @features: The supported features as a bitmask of BLK_CRYPTO_FEATURE_* flags.
* Most drivers should set BLK_CRYPTO_FEATURE_STANDARD_KEYS here.
* @crypto_mode_supported: Array of size BLK_ENCRYPTION_MODE_MAX of
* bitmasks that represents whether a crypto mode
* and data unit size are supported. The i'th bit
* of crypto_mode_supported[crypto_mode] is set iff
* a data unit size of (1 << i) is supported. We
* only support data unit sizes that are powers of
* 2.
* @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
*
* Allocate memory for and initialize a keyslot manager. Called by e.g.
* storage drivers to set up a keyslot manager in their request_queue.
*
* Context: May sleep
* Return: Pointer to constructed keyslot manager or NULL on error.
*/
struct keyslot_manager *keyslot_manager_create(
struct device *dev,
unsigned int num_slots,
const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
unsigned int features,
const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
void *ll_priv_data)
{
struct keyslot_manager *ksm;
unsigned int slot;
unsigned int i;
if (num_slots == 0)
return NULL;
/* Check that all ops are specified */
if (ksm_ll_ops->keyslot_program == NULL ||
ksm_ll_ops->keyslot_evict == NULL)
return NULL;
ksm = kvzalloc(struct_size(ksm, slots, num_slots), GFP_KERNEL);
if (!ksm)
return NULL;
ksm->num_slots = num_slots;
ksm->ksm_ll_ops = *ksm_ll_ops;
ksm->features = features;
memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
sizeof(ksm->crypto_mode_supported));
ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
ksm->ll_priv_data = ll_priv_data;
keyslot_manager_set_dev(ksm, dev);
init_rwsem(&ksm->lock);
init_waitqueue_head(&ksm->idle_slots_wait_queue);
INIT_LIST_HEAD(&ksm->idle_slots);
for (slot = 0; slot < num_slots; slot++) {
list_add_tail(&ksm->slots[slot].idle_slot_node,
&ksm->idle_slots);
}
spin_lock_init(&ksm->idle_slots_lock);
ksm->slot_hashtable_size = roundup_pow_of_two(num_slots);
ksm->slot_hashtable = kvmalloc_array(ksm->slot_hashtable_size,
sizeof(ksm->slot_hashtable[0]),
GFP_KERNEL);
if (!ksm->slot_hashtable)
goto err_free_ksm;
for (i = 0; i < ksm->slot_hashtable_size; i++)
INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
return ksm;
err_free_ksm:
keyslot_manager_destroy(ksm);
return NULL;
}
EXPORT_SYMBOL_GPL(keyslot_manager_create);
void keyslot_manager_set_max_dun_bytes(struct keyslot_manager *ksm,
unsigned int max_dun_bytes)
{
ksm->max_dun_bytes_supported = max_dun_bytes;
}
EXPORT_SYMBOL_GPL(keyslot_manager_set_max_dun_bytes);
static inline struct hlist_head *
hash_bucket_for_key(struct keyslot_manager *ksm,
const struct blk_crypto_key *key)
{
return &ksm->slot_hashtable[blk_crypto_key_hash(key) &
(ksm->slot_hashtable_size - 1)];
}
static void remove_slot_from_lru_list(struct keyslot_manager *ksm, int slot)
{
unsigned long flags;
spin_lock_irqsave(&ksm->idle_slots_lock, flags);
list_del(&ksm->slots[slot].idle_slot_node);
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
}
static int find_keyslot(struct keyslot_manager *ksm,
const struct blk_crypto_key *key)
{
const struct hlist_head *head = hash_bucket_for_key(ksm, key);
const struct keyslot *slotp;
hlist_for_each_entry(slotp, head, hash_node) {
if (slotp->key.hash == key->hash &&
slotp->key.crypto_mode == key->crypto_mode &&
slotp->key.size == key->size &&
slotp->key.data_unit_size == key->data_unit_size &&
!crypto_memneq(slotp->key.raw, key->raw, key->size))
return slotp - ksm->slots;
}
return -ENOKEY;
}
static int find_and_grab_keyslot(struct keyslot_manager *ksm,
const struct blk_crypto_key *key)
{
int slot;
slot = find_keyslot(ksm, key);
if (slot < 0)
return slot;
if (atomic_inc_return(&ksm->slots[slot].slot_refs) == 1) {
/* Took first reference to this slot; remove it from LRU list */
remove_slot_from_lru_list(ksm, slot);
}
return slot;
}
/**
* keyslot_manager_get_slot_for_key() - Program a key into a keyslot.
* @ksm: The keyslot manager to program the key into.
* @key: Pointer to the key object to program, including the raw key, crypto
* mode, and data unit size.
*
* Get a keyslot that's been programmed with the specified key. If one already
* exists, return it with incremented refcount. Otherwise, wait for a keyslot
* to become idle and program it.
*
* Context: Process context. Takes and releases ksm->lock.
* Return: The keyslot on success, else a -errno value.
*/
int keyslot_manager_get_slot_for_key(struct keyslot_manager *ksm,
const struct blk_crypto_key *key)
{
int slot;
int err;
struct keyslot *idle_slot;
if (keyslot_manager_is_passthrough(ksm))
return 0;
down_read(&ksm->lock);
slot = find_and_grab_keyslot(ksm, key);
up_read(&ksm->lock);
if (slot != -ENOKEY)
return slot;
for (;;) {
keyslot_manager_hw_enter(ksm);
slot = find_and_grab_keyslot(ksm, key);
if (slot != -ENOKEY) {
keyslot_manager_hw_exit(ksm);
return slot;
}
/*
* If we're here, that means there wasn't a slot that was
* already programmed with the key. So try to program it.
*/
if (!list_empty(&ksm->idle_slots))
break;
keyslot_manager_hw_exit(ksm);
wait_event(ksm->idle_slots_wait_queue,
!list_empty(&ksm->idle_slots));
}
idle_slot = list_first_entry(&ksm->idle_slots, struct keyslot,
idle_slot_node);
slot = idle_slot - ksm->slots;
err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
if (err) {
wake_up(&ksm->idle_slots_wait_queue);
keyslot_manager_hw_exit(ksm);
return err;
}
/* Move this slot to the hash list for the new key. */
if (idle_slot->key.crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
hlist_del(&idle_slot->hash_node);
hlist_add_head(&idle_slot->hash_node, hash_bucket_for_key(ksm, key));
atomic_set(&idle_slot->slot_refs, 1);
idle_slot->key = *key;
remove_slot_from_lru_list(ksm, slot);
keyslot_manager_hw_exit(ksm);
return slot;
}
/**
* keyslot_manager_get_slot() - Increment the refcount on the specified slot.
* @ksm: The keyslot manager that we want to modify.
* @slot: The slot to increment the refcount of.
*
* This function assumes that there is already an active reference to that slot
* and simply increments the refcount. This is useful when cloning a bio that
* already has a reference to a keyslot, and we want the cloned bio to also have
* its own reference.
*
* Context: Any context.
*/
void keyslot_manager_get_slot(struct keyslot_manager *ksm, unsigned int slot)
{
if (keyslot_manager_is_passthrough(ksm))
return;
if (WARN_ON(slot >= ksm->num_slots))
return;
WARN_ON(atomic_inc_return(&ksm->slots[slot].slot_refs) < 2);
}
/**
* keyslot_manager_put_slot() - Release a reference to a slot
* @ksm: The keyslot manager to release the reference from.
* @slot: The slot to release the reference from.
*
* Context: Any context.
*/
void keyslot_manager_put_slot(struct keyslot_manager *ksm, unsigned int slot)
{
unsigned long flags;
if (keyslot_manager_is_passthrough(ksm))
return;
if (WARN_ON(slot >= ksm->num_slots))
return;
if (atomic_dec_and_lock_irqsave(&ksm->slots[slot].slot_refs,
&ksm->idle_slots_lock, flags)) {
list_add_tail(&ksm->slots[slot].idle_slot_node,
&ksm->idle_slots);
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
wake_up(&ksm->idle_slots_wait_queue);
}
}
/**
* keyslot_manager_crypto_mode_supported() - Find out if a crypto_mode /
* data unit size / is_hw_wrapped_key
* combination is supported by a ksm.
* @ksm: The keyslot manager to check
* @crypto_mode: The crypto mode to check for.
* @dun_bytes: The number of bytes that will be used to specify the DUN
* @data_unit_size: The data_unit_size for the mode.
* @is_hw_wrapped_key: Whether a hardware-wrapped key will be used.
*
* Calls and returns the result of the crypto_mode_supported function specified
* by the ksm.
*
* Context: Process context.
* Return: Whether or not this ksm supports the specified crypto settings.
*/
bool keyslot_manager_crypto_mode_supported(struct keyslot_manager *ksm,
enum blk_crypto_mode_num crypto_mode,
unsigned int dun_bytes,
unsigned int data_unit_size,
bool is_hw_wrapped_key)
{
if (!ksm)
return false;
if (WARN_ON(crypto_mode >= BLK_ENCRYPTION_MODE_MAX))
return false;
if (WARN_ON(!is_power_of_2(data_unit_size)))
return false;
if (is_hw_wrapped_key) {
if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS))
return false;
} else {
if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS))
return false;
}
if (!(ksm->crypto_mode_supported[crypto_mode] & data_unit_size))
return false;
return ksm->max_dun_bytes_supported >= dun_bytes;
}
/**
* keyslot_manager_evict_key() - Evict a key from the lower layer device.
* @ksm: The keyslot manager to evict from
* @key: The key to evict
*
* Find the keyslot that the specified key was programmed into, and evict that
* slot from the lower layer device if that slot is not currently in use.
*
* Context: Process context. Takes and releases ksm->lock.
* Return: 0 on success, -EBUSY if the key is still in use, or another
* -errno value on other error.
*/
int keyslot_manager_evict_key(struct keyslot_manager *ksm,
const struct blk_crypto_key *key)
{
int slot;
int err;
struct keyslot *slotp;
if (keyslot_manager_is_passthrough(ksm)) {
if (ksm->ksm_ll_ops.keyslot_evict) {
keyslot_manager_hw_enter(ksm);
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
keyslot_manager_hw_exit(ksm);
return err;
}
return 0;
}
keyslot_manager_hw_enter(ksm);
slot = find_keyslot(ksm, key);
if (slot < 0) {
err = slot;
goto out_unlock;
}
slotp = &ksm->slots[slot];
if (atomic_read(&slotp->slot_refs) != 0) {
err = -EBUSY;
goto out_unlock;
}
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, slot);
if (err)
goto out_unlock;
hlist_del(&slotp->hash_node);
memzero_explicit(&slotp->key, sizeof(slotp->key));
err = 0;
out_unlock:
keyslot_manager_hw_exit(ksm);
return err;
}
/**
* keyslot_manager_reprogram_all_keys() - Re-program all keyslots.
* @ksm: The keyslot manager
*
* Re-program all keyslots that are supposed to have a key programmed. This is
* intended only for use by drivers for hardware that loses its keys on reset.
*
* Context: Process context. Takes and releases ksm->lock.
*/
void keyslot_manager_reprogram_all_keys(struct keyslot_manager *ksm)
{
unsigned int slot;
if (WARN_ON(keyslot_manager_is_passthrough(ksm)))
return;
/* This is for device initialization, so don't resume the device */
down_write(&ksm->lock);
for (slot = 0; slot < ksm->num_slots; slot++) {
const struct keyslot *slotp = &ksm->slots[slot];
int err;
if (slotp->key.crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
continue;
err = ksm->ksm_ll_ops.keyslot_program(ksm, &slotp->key, slot);
WARN_ON(err);
}
up_write(&ksm->lock);
}
EXPORT_SYMBOL_GPL(keyslot_manager_reprogram_all_keys);
/**
* keyslot_manager_private() - return the private data stored with ksm
* @ksm: The keyslot manager
*
* Returns the private data passed to the ksm when it was created.
*/
void *keyslot_manager_private(struct keyslot_manager *ksm)
{
return ksm->ll_priv_data;
}
EXPORT_SYMBOL_GPL(keyslot_manager_private);
void keyslot_manager_destroy(struct keyslot_manager *ksm)
{
if (ksm) {
kvfree(ksm->slot_hashtable);
memzero_explicit(ksm, struct_size(ksm, slots, ksm->num_slots));
kvfree(ksm);
}
}
EXPORT_SYMBOL_GPL(keyslot_manager_destroy);
/**
* keyslot_manager_create_passthrough() - Create a passthrough keyslot manager
* @dev: Device for runtime power management (NULL if none)
* @ksm_ll_ops: The struct keyslot_mgmt_ll_ops
* @features: Bitmask of BLK_CRYPTO_FEATURE_* flags
* @crypto_mode_supported: Bitmasks for supported encryption modes
* @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
*
* Allocate memory for and initialize a passthrough keyslot manager.
* Called by e.g. storage drivers to set up a keyslot manager in their
* request_queue, when the storage driver wants to manage its keys by itself.
* This is useful for inline encryption hardware that don't have a small fixed
* number of keyslots, and for layered devices.
*
* See keyslot_manager_create() for more details about the parameters.
*
* Context: This function may sleep
* Return: Pointer to constructed keyslot manager or NULL on error.
*/
struct keyslot_manager *keyslot_manager_create_passthrough(
struct device *dev,
const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
unsigned int features,
const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
void *ll_priv_data)
{
struct keyslot_manager *ksm;
ksm = kzalloc(sizeof(*ksm), GFP_KERNEL);
if (!ksm)
return NULL;
ksm->ksm_ll_ops = *ksm_ll_ops;
ksm->features = features;
memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
sizeof(ksm->crypto_mode_supported));
ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
ksm->ll_priv_data = ll_priv_data;
keyslot_manager_set_dev(ksm, dev);
init_rwsem(&ksm->lock);
return ksm;
}
EXPORT_SYMBOL_GPL(keyslot_manager_create_passthrough);
/**
* keyslot_manager_intersect_modes() - restrict supported modes by child device
* @parent: The keyslot manager for parent device
* @child: The keyslot manager for child device, or NULL
*
* Clear any crypto mode support bits in @parent that aren't set in @child.
* If @child is NULL, then all parent bits are cleared.
*
* Only use this when setting up the keyslot manager for a layered device,
* before it's been exposed yet.
*/
void keyslot_manager_intersect_modes(struct keyslot_manager *parent,
const struct keyslot_manager *child)
{
if (child) {
unsigned int i;
parent->features &= child->features;
parent->max_dun_bytes_supported =
min(parent->max_dun_bytes_supported,
child->max_dun_bytes_supported);
for (i = 0; i < ARRAY_SIZE(child->crypto_mode_supported); i++) {
parent->crypto_mode_supported[i] &=
child->crypto_mode_supported[i];
}
} else {
parent->features = 0;
parent->max_dun_bytes_supported = 0;
memset(parent->crypto_mode_supported, 0,
sizeof(parent->crypto_mode_supported));
}
}
EXPORT_SYMBOL_GPL(keyslot_manager_intersect_modes);
/**
* keyslot_manager_derive_raw_secret() - Derive software secret from wrapped key
* @ksm: The keyslot manager
* @wrapped_key: The wrapped key
* @wrapped_key_size: Size of the wrapped key in bytes
* @secret: (output) the software secret
* @secret_size: (output) the number of secret bytes to derive
*
* Given a hardware-wrapped key, ask the hardware to derive a secret which
* software can use for cryptographic tasks other than inline encryption. The
* derived secret is guaranteed to be cryptographically isolated from the key
* with which any inline encryption with this wrapped key would actually be
* done. I.e., both will be derived from the unwrapped key.
*
* Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported,
* or another -errno code.
*/
int keyslot_manager_derive_raw_secret(struct keyslot_manager *ksm,
const u8 *wrapped_key,
unsigned int wrapped_key_size,
u8 *secret, unsigned int secret_size)
{
int err;
if (ksm->ksm_ll_ops.derive_raw_secret) {
keyslot_manager_hw_enter(ksm);
err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key,
wrapped_key_size,
secret, secret_size);
keyslot_manager_hw_exit(ksm);
} else {
err = -EOPNOTSUPP;
}
return err;
}
EXPORT_SYMBOL_GPL(keyslot_manager_derive_raw_secret);