android_kernel_xiaomi_sm7250/sound/usb/usbaudio.c
Clemens Ladisch ca81090a00 [ALSA] usb-audio - use only one packet in synchronization feedback URBs
USB generic driver
Do not use more than one packet in synchronization feedback URBs because
it would be pointless to send or receive more than one value at the same
time.

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
2005-05-29 10:05:57 +02:00

3313 lines
92 KiB
C

/*
* (Tentative) USB Audio Driver for ALSA
*
* Main and PCM part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* NOTES:
*
* - async unlink should be used for avoiding the sleep inside lock.
* 2.4.22 usb-uhci seems buggy for async unlinking and results in
* oops. in such a cse, pass async_unlink=0 option.
* - the linked URBs would be preferred but not used so far because of
* the instability of unlinking.
* - type II is not supported properly. there is no device which supports
* this type *correctly*. SB extigy looks as if it supports, but it's
* indeed an AC3 stream packed in SPDIF frames (i.e. no real AC3 stream).
*/
#include <sound/driver.h>
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/usb.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include "usbaudio.h"
MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("USB Audio");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Generic,USB Audio}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
static int vid[SNDRV_CARDS] = { [0 ... (SNDRV_CARDS-1)] = -1 }; /* Vendor ID for this card */
static int pid[SNDRV_CARDS] = { [0 ... (SNDRV_CARDS-1)] = -1 }; /* Product ID for this card */
static int nrpacks = 4; /* max. number of packets per urb */
static int async_unlink = 1;
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the USB audio adapter.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the USB audio adapter.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable USB audio adapter.");
module_param_array(vid, int, NULL, 0444);
MODULE_PARM_DESC(vid, "Vendor ID for the USB audio device.");
module_param_array(pid, int, NULL, 0444);
MODULE_PARM_DESC(pid, "Product ID for the USB audio device.");
module_param(nrpacks, int, 0444);
MODULE_PARM_DESC(nrpacks, "Max. number of packets per URB.");
module_param(async_unlink, bool, 0444);
MODULE_PARM_DESC(async_unlink, "Use async unlink mode.");
/*
* debug the h/w constraints
*/
/* #define HW_CONST_DEBUG */
/*
*
*/
#define MAX_PACKS 10
#define MAX_PACKS_HS (MAX_PACKS * 8) /* in high speed mode */
#define MAX_URBS 5 /* max. 20ms long packets */
#define SYNC_URBS 2 /* always two urbs for sync */
#define MIN_PACKS_URB 1 /* minimum 1 packet per urb */
typedef struct snd_usb_substream snd_usb_substream_t;
typedef struct snd_usb_stream snd_usb_stream_t;
typedef struct snd_urb_ctx snd_urb_ctx_t;
struct audioformat {
struct list_head list;
snd_pcm_format_t format; /* format type */
unsigned int channels; /* # channels */
unsigned int fmt_type; /* USB audio format type (1-3) */
unsigned int frame_size; /* samples per frame for non-audio */
int iface; /* interface number */
unsigned char altsetting; /* corresponding alternate setting */
unsigned char altset_idx; /* array index of altenate setting */
unsigned char attributes; /* corresponding attributes of cs endpoint */
unsigned char endpoint; /* endpoint */
unsigned char ep_attr; /* endpoint attributes */
unsigned int maxpacksize; /* max. packet size */
unsigned int rates; /* rate bitmasks */
unsigned int rate_min, rate_max; /* min/max rates */
unsigned int nr_rates; /* number of rate table entries */
unsigned int *rate_table; /* rate table */
};
struct snd_urb_ctx {
struct urb *urb;
snd_usb_substream_t *subs;
int index; /* index for urb array */
int packets; /* number of packets per urb */
int transfer; /* transferred size */
char *buf; /* buffer for capture */
};
struct snd_urb_ops {
int (*prepare)(snd_usb_substream_t *subs, snd_pcm_runtime_t *runtime, struct urb *u);
int (*retire)(snd_usb_substream_t *subs, snd_pcm_runtime_t *runtime, struct urb *u);
int (*prepare_sync)(snd_usb_substream_t *subs, snd_pcm_runtime_t *runtime, struct urb *u);
int (*retire_sync)(snd_usb_substream_t *subs, snd_pcm_runtime_t *runtime, struct urb *u);
};
struct snd_usb_substream {
snd_usb_stream_t *stream;
struct usb_device *dev;
snd_pcm_substream_t *pcm_substream;
int direction; /* playback or capture */
int interface; /* current interface */
int endpoint; /* assigned endpoint */
struct audioformat *cur_audiofmt; /* current audioformat pointer (for hw_params callback) */
unsigned int cur_rate; /* current rate (for hw_params callback) */
unsigned int period_bytes; /* current period bytes (for hw_params callback) */
unsigned int format; /* USB data format */
unsigned int datapipe; /* the data i/o pipe */
unsigned int syncpipe; /* 1 - async out or adaptive in */
unsigned int syncinterval; /* P for adaptive mode, 0 otherwise */
unsigned int freqn; /* nominal sampling rate in fs/fps in Q16.16 format */
unsigned int freqm; /* momentary sampling rate in fs/fps in Q16.16 format */
unsigned int freqmax; /* maximum sampling rate, used for buffer management */
unsigned int phase; /* phase accumulator */
unsigned int maxpacksize; /* max packet size in bytes */
unsigned int maxframesize; /* max packet size in frames */
unsigned int curpacksize; /* current packet size in bytes (for capture) */
unsigned int curframesize; /* current packet size in frames (for capture) */
unsigned int fill_max: 1; /* fill max packet size always */
unsigned int fmt_type; /* USB audio format type (1-3) */
unsigned int running: 1; /* running status */
unsigned int hwptr; /* free frame position in the buffer (only for playback) */
unsigned int hwptr_done; /* processed frame position in the buffer */
unsigned int transfer_sched; /* scheduled frames since last period (for playback) */
unsigned int transfer_done; /* processed frames since last period update */
unsigned long active_mask; /* bitmask of active urbs */
unsigned long unlink_mask; /* bitmask of unlinked urbs */
unsigned int nurbs; /* # urbs */
snd_urb_ctx_t dataurb[MAX_URBS]; /* data urb table */
snd_urb_ctx_t syncurb[SYNC_URBS]; /* sync urb table */
char syncbuf[SYNC_URBS * 4]; /* sync buffer; it's so small - let's get static */
char *tmpbuf; /* temporary buffer for playback */
u64 formats; /* format bitmasks (all or'ed) */
unsigned int num_formats; /* number of supported audio formats (list) */
struct list_head fmt_list; /* format list */
spinlock_t lock;
struct snd_urb_ops ops; /* callbacks (must be filled at init) */
};
struct snd_usb_stream {
snd_usb_audio_t *chip;
snd_pcm_t *pcm;
int pcm_index;
unsigned int fmt_type; /* USB audio format type (1-3) */
snd_usb_substream_t substream[2];
struct list_head list;
};
/*
* we keep the snd_usb_audio_t instances by ourselves for merging
* the all interfaces on the same card as one sound device.
*/
static DECLARE_MUTEX(register_mutex);
static snd_usb_audio_t *usb_chip[SNDRV_CARDS];
/*
* convert a sampling rate into our full speed format (fs/1000 in Q16.16)
* this will overflow at approx 524 kHz
*/
inline static unsigned get_usb_full_speed_rate(unsigned int rate)
{
return ((rate << 13) + 62) / 125;
}
/*
* convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
* this will overflow at approx 4 MHz
*/
inline static unsigned get_usb_high_speed_rate(unsigned int rate)
{
return ((rate << 10) + 62) / 125;
}
/* convert our full speed USB rate into sampling rate in Hz */
inline static unsigned get_full_speed_hz(unsigned int usb_rate)
{
return (usb_rate * 125 + (1 << 12)) >> 13;
}
/* convert our high speed USB rate into sampling rate in Hz */
inline static unsigned get_high_speed_hz(unsigned int usb_rate)
{
return (usb_rate * 125 + (1 << 9)) >> 10;
}
/*
* prepare urb for full speed capture sync pipe
*
* fill the length and offset of each urb descriptor.
* the fixed 10.14 frequency is passed through the pipe.
*/
static int prepare_capture_sync_urb(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
unsigned char *cp = urb->transfer_buffer;
snd_urb_ctx_t *ctx = (snd_urb_ctx_t *)urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 3;
urb->iso_frame_desc[0].offset = 0;
cp[0] = subs->freqn >> 2;
cp[1] = subs->freqn >> 10;
cp[2] = subs->freqn >> 18;
return 0;
}
/*
* prepare urb for high speed capture sync pipe
*
* fill the length and offset of each urb descriptor.
* the fixed 12.13 frequency is passed as 16.16 through the pipe.
*/
static int prepare_capture_sync_urb_hs(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
unsigned char *cp = urb->transfer_buffer;
snd_urb_ctx_t *ctx = (snd_urb_ctx_t *)urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 4;
urb->iso_frame_desc[0].offset = 0;
cp[0] = subs->freqn;
cp[1] = subs->freqn >> 8;
cp[2] = subs->freqn >> 16;
cp[3] = subs->freqn >> 24;
return 0;
}
/*
* process after capture sync complete
* - nothing to do
*/
static int retire_capture_sync_urb(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
return 0;
}
/*
* prepare urb for capture data pipe
*
* fill the offset and length of each descriptor.
*
* we use a temporary buffer to write the captured data.
* since the length of written data is determined by host, we cannot
* write onto the pcm buffer directly... the data is thus copied
* later at complete callback to the global buffer.
*/
static int prepare_capture_urb(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
int i, offs;
unsigned long flags;
snd_urb_ctx_t *ctx = (snd_urb_ctx_t *)urb->context;
offs = 0;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->number_of_packets = 0;
spin_lock_irqsave(&subs->lock, flags);
for (i = 0; i < ctx->packets; i++) {
urb->iso_frame_desc[i].offset = offs;
urb->iso_frame_desc[i].length = subs->curpacksize;
offs += subs->curpacksize;
urb->number_of_packets++;
subs->transfer_sched += subs->curframesize;
if (subs->transfer_sched >= runtime->period_size) {
subs->transfer_sched -= runtime->period_size;
break;
}
}
spin_unlock_irqrestore(&subs->lock, flags);
urb->transfer_buffer = ctx->buf;
urb->transfer_buffer_length = offs;
#if 0 // for check
if (! urb->bandwidth) {
int bustime;
bustime = usb_check_bandwidth(urb->dev, urb);
if (bustime < 0)
return bustime;
printk("urb %d: bandwidth = %d (packets = %d)\n", ctx->index, bustime, urb->number_of_packets);
usb_claim_bandwidth(urb->dev, urb, bustime, 1);
}
#endif // for check
return 0;
}
/*
* process after capture complete
*
* copy the data from each desctiptor to the pcm buffer, and
* update the current position.
*/
static int retire_capture_urb(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
unsigned long flags;
unsigned char *cp;
int i;
unsigned int stride, len, oldptr;
stride = runtime->frame_bits >> 3;
for (i = 0; i < urb->number_of_packets; i++) {
cp = (unsigned char *)urb->transfer_buffer + urb->iso_frame_desc[i].offset;
if (urb->iso_frame_desc[i].status) {
snd_printd(KERN_ERR "frame %d active: %d\n", i, urb->iso_frame_desc[i].status);
// continue;
}
len = urb->iso_frame_desc[i].actual_length / stride;
if (! len)
continue;
/* update the current pointer */
spin_lock_irqsave(&subs->lock, flags);
oldptr = subs->hwptr_done;
subs->hwptr_done += len;
if (subs->hwptr_done >= runtime->buffer_size)
subs->hwptr_done -= runtime->buffer_size;
subs->transfer_done += len;
spin_unlock_irqrestore(&subs->lock, flags);
/* copy a data chunk */
if (oldptr + len > runtime->buffer_size) {
unsigned int cnt = runtime->buffer_size - oldptr;
unsigned int blen = cnt * stride;
memcpy(runtime->dma_area + oldptr * stride, cp, blen);
memcpy(runtime->dma_area, cp + blen, len * stride - blen);
} else {
memcpy(runtime->dma_area + oldptr * stride, cp, len * stride);
}
/* update the pointer, call callback if necessary */
spin_lock_irqsave(&subs->lock, flags);
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
spin_unlock_irqrestore(&subs->lock, flags);
snd_pcm_period_elapsed(subs->pcm_substream);
} else
spin_unlock_irqrestore(&subs->lock, flags);
}
return 0;
}
/*
* prepare urb for full speed playback sync pipe
*
* set up the offset and length to receive the current frequency.
*/
static int prepare_playback_sync_urb(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
snd_urb_ctx_t *ctx = (snd_urb_ctx_t *)urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 3;
urb->iso_frame_desc[0].offset = 0;
return 0;
}
/*
* prepare urb for high speed playback sync pipe
*
* set up the offset and length to receive the current frequency.
*/
static int prepare_playback_sync_urb_hs(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
snd_urb_ctx_t *ctx = (snd_urb_ctx_t *)urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 4;
urb->iso_frame_desc[0].offset = 0;
return 0;
}
/*
* process after full speed playback sync complete
*
* retrieve the current 10.14 frequency from pipe, and set it.
* the value is referred in prepare_playback_urb().
*/
static int retire_playback_sync_urb(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
unsigned int f;
unsigned long flags;
if (urb->iso_frame_desc[0].status == 0 &&
urb->iso_frame_desc[0].actual_length == 3) {
f = combine_triple((u8*)urb->transfer_buffer) << 2;
#if 0
if (f < subs->freqn - (subs->freqn>>3) || f > subs->freqmax) {
snd_printd(KERN_WARNING "requested frequency %d (%u,%03uHz) out of range (current nominal %d (%u,%03uHz))\n",
f, f >> 14, (f & ((1 << 14) - 1) * 1000) / ((1 << 14) - 1),
subs->freqn, subs->freqn >> 14, (subs->freqn & ((1 << 14) - 1) * 1000) / ((1 << 14) - 1));
continue;
}
#endif
spin_lock_irqsave(&subs->lock, flags);
subs->freqm = f;
spin_unlock_irqrestore(&subs->lock, flags);
}
return 0;
}
/*
* process after high speed playback sync complete
*
* retrieve the current 12.13 frequency from pipe, and set it.
* the value is referred in prepare_playback_urb().
*/
static int retire_playback_sync_urb_hs(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
unsigned int f;
unsigned long flags;
if (urb->iso_frame_desc[0].status == 0 &&
urb->iso_frame_desc[0].actual_length == 4) {
f = combine_quad((u8*)urb->transfer_buffer) & 0x0fffffff;
spin_lock_irqsave(&subs->lock, flags);
subs->freqm = f;
spin_unlock_irqrestore(&subs->lock, flags);
}
return 0;
}
/*
* prepare urb for playback data pipe
*
* we copy the data directly from the pcm buffer.
* the current position to be copied is held in hwptr field.
* since a urb can handle only a single linear buffer, if the total
* transferred area overflows the buffer boundary, we cannot send
* it directly from the buffer. thus the data is once copied to
* a temporary buffer and urb points to that.
*/
static int prepare_playback_urb(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
int i, stride, offs;
unsigned int counts;
unsigned long flags;
snd_urb_ctx_t *ctx = (snd_urb_ctx_t *)urb->context;
stride = runtime->frame_bits >> 3;
offs = 0;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->number_of_packets = 0;
spin_lock_irqsave(&subs->lock, flags);
for (i = 0; i < ctx->packets; i++) {
/* calculate the size of a packet */
if (subs->fill_max)
counts = subs->maxframesize; /* fixed */
else {
subs->phase = (subs->phase & 0xffff) + subs->freqm;
counts = subs->phase >> 16;
if (counts > subs->maxframesize)
counts = subs->maxframesize;
}
/* set up descriptor */
urb->iso_frame_desc[i].offset = offs * stride;
urb->iso_frame_desc[i].length = counts * stride;
offs += counts;
urb->number_of_packets++;
subs->transfer_sched += counts;
if (subs->transfer_sched >= runtime->period_size) {
subs->transfer_sched -= runtime->period_size;
if (subs->fmt_type == USB_FORMAT_TYPE_II) {
if (subs->transfer_sched > 0) {
/* FIXME: fill-max mode is not supported yet */
offs -= subs->transfer_sched;
counts -= subs->transfer_sched;
urb->iso_frame_desc[i].length = counts * stride;
subs->transfer_sched = 0;
}
i++;
if (i < ctx->packets) {
/* add a transfer delimiter */
urb->iso_frame_desc[i].offset = offs * stride;
urb->iso_frame_desc[i].length = 0;
urb->number_of_packets++;
}
}
break;
}
}
if (subs->hwptr + offs > runtime->buffer_size) {
/* err, the transferred area goes over buffer boundary.
* copy the data to the temp buffer.
*/
int len;
len = runtime->buffer_size - subs->hwptr;
urb->transfer_buffer = subs->tmpbuf;
memcpy(subs->tmpbuf, runtime->dma_area + subs->hwptr * stride, len * stride);
memcpy(subs->tmpbuf + len * stride, runtime->dma_area, (offs - len) * stride);
subs->hwptr += offs;
subs->hwptr -= runtime->buffer_size;
} else {
/* set the buffer pointer */
urb->transfer_buffer = runtime->dma_area + subs->hwptr * stride;
subs->hwptr += offs;
}
spin_unlock_irqrestore(&subs->lock, flags);
urb->transfer_buffer_length = offs * stride;
ctx->transfer = offs;
return 0;
}
/*
* process after playback data complete
*
* update the current position and call callback if a period is processed.
*/
static int retire_playback_urb(snd_usb_substream_t *subs,
snd_pcm_runtime_t *runtime,
struct urb *urb)
{
unsigned long flags;
snd_urb_ctx_t *ctx = (snd_urb_ctx_t *)urb->context;
spin_lock_irqsave(&subs->lock, flags);
subs->transfer_done += ctx->transfer;
subs->hwptr_done += ctx->transfer;
ctx->transfer = 0;
if (subs->hwptr_done >= runtime->buffer_size)
subs->hwptr_done -= runtime->buffer_size;
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
spin_unlock_irqrestore(&subs->lock, flags);
snd_pcm_period_elapsed(subs->pcm_substream);
} else
spin_unlock_irqrestore(&subs->lock, flags);
return 0;
}
/*
*/
static struct snd_urb_ops audio_urb_ops[2] = {
{
.prepare = prepare_playback_urb,
.retire = retire_playback_urb,
.prepare_sync = prepare_playback_sync_urb,
.retire_sync = retire_playback_sync_urb,
},
{
.prepare = prepare_capture_urb,
.retire = retire_capture_urb,
.prepare_sync = prepare_capture_sync_urb,
.retire_sync = retire_capture_sync_urb,
},
};
static struct snd_urb_ops audio_urb_ops_high_speed[2] = {
{
.prepare = prepare_playback_urb,
.retire = retire_playback_urb,
.prepare_sync = prepare_playback_sync_urb_hs,
.retire_sync = retire_playback_sync_urb_hs,
},
{
.prepare = prepare_capture_urb,
.retire = retire_capture_urb,
.prepare_sync = prepare_capture_sync_urb_hs,
.retire_sync = retire_capture_sync_urb,
},
};
/*
* complete callback from data urb
*/
static void snd_complete_urb(struct urb *urb, struct pt_regs *regs)
{
snd_urb_ctx_t *ctx = (snd_urb_ctx_t *)urb->context;
snd_usb_substream_t *subs = ctx->subs;
snd_pcm_substream_t *substream = ctx->subs->pcm_substream;
int err = 0;
if ((subs->running && subs->ops.retire(subs, substream->runtime, urb)) ||
! subs->running || /* can be stopped during retire callback */
(err = subs->ops.prepare(subs, substream->runtime, urb)) < 0 ||
(err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
clear_bit(ctx->index, &subs->active_mask);
if (err < 0) {
snd_printd(KERN_ERR "cannot submit urb (err = %d)\n", err);
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
}
}
}
/*
* complete callback from sync urb
*/
static void snd_complete_sync_urb(struct urb *urb, struct pt_regs *regs)
{
snd_urb_ctx_t *ctx = (snd_urb_ctx_t *)urb->context;
snd_usb_substream_t *subs = ctx->subs;
snd_pcm_substream_t *substream = ctx->subs->pcm_substream;
int err = 0;
if ((subs->running && subs->ops.retire_sync(subs, substream->runtime, urb)) ||
! subs->running || /* can be stopped during retire callback */
(err = subs->ops.prepare_sync(subs, substream->runtime, urb)) < 0 ||
(err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
clear_bit(ctx->index + 16, &subs->active_mask);
if (err < 0) {
snd_printd(KERN_ERR "cannot submit sync urb (err = %d)\n", err);
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
}
}
}
/*
* unlink active urbs.
*/
static int deactivate_urbs(snd_usb_substream_t *subs, int force, int can_sleep)
{
unsigned int i;
int async;
subs->running = 0;
if (!force && subs->stream->chip->shutdown) /* to be sure... */
return -EBADFD;
async = !can_sleep && async_unlink;
if (! async && in_interrupt())
return 0;
for (i = 0; i < subs->nurbs; i++) {
if (test_bit(i, &subs->active_mask)) {
if (! test_and_set_bit(i, &subs->unlink_mask)) {
struct urb *u = subs->dataurb[i].urb;
if (async) {
u->transfer_flags |= URB_ASYNC_UNLINK;
usb_unlink_urb(u);
} else
usb_kill_urb(u);
}
}
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
if (test_bit(i+16, &subs->active_mask)) {
if (! test_and_set_bit(i+16, &subs->unlink_mask)) {
struct urb *u = subs->syncurb[i].urb;
if (async) {
u->transfer_flags |= URB_ASYNC_UNLINK;
usb_unlink_urb(u);
} else
usb_kill_urb(u);
}
}
}
}
return 0;
}
/*
* set up and start data/sync urbs
*/
static int start_urbs(snd_usb_substream_t *subs, snd_pcm_runtime_t *runtime)
{
unsigned int i;
int err;
if (subs->stream->chip->shutdown)
return -EBADFD;
for (i = 0; i < subs->nurbs; i++) {
snd_assert(subs->dataurb[i].urb, return -EINVAL);
if (subs->ops.prepare(subs, runtime, subs->dataurb[i].urb) < 0) {
snd_printk(KERN_ERR "cannot prepare datapipe for urb %d\n", i);
goto __error;
}
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
snd_assert(subs->syncurb[i].urb, return -EINVAL);
if (subs->ops.prepare_sync(subs, runtime, subs->syncurb[i].urb) < 0) {
snd_printk(KERN_ERR "cannot prepare syncpipe for urb %d\n", i);
goto __error;
}
}
}
subs->active_mask = 0;
subs->unlink_mask = 0;
subs->running = 1;
for (i = 0; i < subs->nurbs; i++) {
if ((err = usb_submit_urb(subs->dataurb[i].urb, GFP_ATOMIC)) < 0) {
snd_printk(KERN_ERR "cannot submit datapipe for urb %d, err = %d\n", i, err);
goto __error;
}
set_bit(i, &subs->active_mask);
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
if ((err = usb_submit_urb(subs->syncurb[i].urb, GFP_ATOMIC)) < 0) {
snd_printk(KERN_ERR "cannot submit syncpipe for urb %d, err = %d\n", i, err);
goto __error;
}
set_bit(i + 16, &subs->active_mask);
}
}
return 0;
__error:
// snd_pcm_stop(subs->pcm_substream, SNDRV_PCM_STATE_XRUN);
deactivate_urbs(subs, 0, 0);
return -EPIPE;
}
/*
* wait until all urbs are processed.
*/
static int wait_clear_urbs(snd_usb_substream_t *subs)
{
int timeout = HZ;
unsigned int i;
int alive;
do {
alive = 0;
for (i = 0; i < subs->nurbs; i++) {
if (test_bit(i, &subs->active_mask))
alive++;
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
if (test_bit(i + 16, &subs->active_mask))
alive++;
}
}
if (! alive)
break;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(1);
} while (--timeout > 0);
if (alive)
snd_printk(KERN_ERR "timeout: still %d active urbs..\n", alive);
return 0;
}
/*
* return the current pcm pointer. just return the hwptr_done value.
*/
static snd_pcm_uframes_t snd_usb_pcm_pointer(snd_pcm_substream_t *substream)
{
snd_usb_substream_t *subs = (snd_usb_substream_t *)substream->runtime->private_data;
return subs->hwptr_done;
}
/*
* start/stop substream
*/
static int snd_usb_pcm_trigger(snd_pcm_substream_t *substream, int cmd)
{
snd_usb_substream_t *subs = (snd_usb_substream_t *)substream->runtime->private_data;
int err;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
err = start_urbs(subs, substream->runtime);
break;
case SNDRV_PCM_TRIGGER_STOP:
err = deactivate_urbs(subs, 0, 0);
break;
default:
err = -EINVAL;
break;
}
return err < 0 ? err : 0;
}
/*
* release a urb data
*/
static void release_urb_ctx(snd_urb_ctx_t *u)
{
if (u->urb) {
usb_free_urb(u->urb);
u->urb = NULL;
}
if (u->buf) {
kfree(u->buf);
u->buf = NULL;
}
}
/*
* release a substream
*/
static void release_substream_urbs(snd_usb_substream_t *subs, int force)
{
int i;
/* stop urbs (to be sure) */
deactivate_urbs(subs, force, 1);
wait_clear_urbs(subs);
for (i = 0; i < MAX_URBS; i++)
release_urb_ctx(&subs->dataurb[i]);
for (i = 0; i < SYNC_URBS; i++)
release_urb_ctx(&subs->syncurb[i]);
if (subs->tmpbuf) {
kfree(subs->tmpbuf);
subs->tmpbuf = NULL;
}
subs->nurbs = 0;
}
/*
* initialize a substream for plaback/capture
*/
static int init_substream_urbs(snd_usb_substream_t *subs, unsigned int period_bytes,
unsigned int rate, unsigned int frame_bits)
{
unsigned int maxsize, n, i;
int is_playback = subs->direction == SNDRV_PCM_STREAM_PLAYBACK;
unsigned int npacks[MAX_URBS], urb_packs, total_packs;
/* calculate the frequency in 16.16 format */
if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL)
subs->freqn = get_usb_full_speed_rate(rate);
else
subs->freqn = get_usb_high_speed_rate(rate);
subs->freqm = subs->freqn;
subs->freqmax = subs->freqn + (subs->freqn >> 2); /* max. allowed frequency */
subs->phase = 0;
/* calculate the max. size of packet */
maxsize = ((subs->freqmax + 0xffff) * (frame_bits >> 3)) >> 16;
if (subs->maxpacksize && maxsize > subs->maxpacksize) {
//snd_printd(KERN_DEBUG "maxsize %d is greater than defined size %d\n",
// maxsize, subs->maxpacksize);
maxsize = subs->maxpacksize;
}
if (subs->fill_max)
subs->curpacksize = subs->maxpacksize;
else
subs->curpacksize = maxsize;
if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL)
urb_packs = nrpacks;
else
urb_packs = nrpacks * 8;
/* allocate a temporary buffer for playback */
if (is_playback) {
subs->tmpbuf = kmalloc(maxsize * urb_packs, GFP_KERNEL);
if (! subs->tmpbuf) {
snd_printk(KERN_ERR "cannot malloc tmpbuf\n");
return -ENOMEM;
}
}
/* decide how many packets to be used */
total_packs = (period_bytes + maxsize - 1) / maxsize;
if (total_packs < 2 * MIN_PACKS_URB)
total_packs = 2 * MIN_PACKS_URB;
subs->nurbs = (total_packs + urb_packs - 1) / urb_packs;
if (subs->nurbs > MAX_URBS) {
/* too much... */
subs->nurbs = MAX_URBS;
total_packs = MAX_URBS * urb_packs;
}
n = total_packs;
for (i = 0; i < subs->nurbs; i++) {
npacks[i] = n > urb_packs ? urb_packs : n;
n -= urb_packs;
}
if (subs->nurbs <= 1) {
/* too little - we need at least two packets
* to ensure contiguous playback/capture
*/
subs->nurbs = 2;
npacks[0] = (total_packs + 1) / 2;
npacks[1] = total_packs - npacks[0];
} else if (npacks[subs->nurbs-1] < MIN_PACKS_URB) {
/* the last packet is too small.. */
if (subs->nurbs > 2) {
/* merge to the first one */
npacks[0] += npacks[subs->nurbs - 1];
subs->nurbs--;
} else {
/* divide to two */
subs->nurbs = 2;
npacks[0] = (total_packs + 1) / 2;
npacks[1] = total_packs - npacks[0];
}
}
/* allocate and initialize data urbs */
for (i = 0; i < subs->nurbs; i++) {
snd_urb_ctx_t *u = &subs->dataurb[i];
u->index = i;
u->subs = subs;
u->transfer = 0;
u->packets = npacks[i];
if (subs->fmt_type == USB_FORMAT_TYPE_II)
u->packets++; /* for transfer delimiter */
if (! is_playback) {
/* allocate a capture buffer per urb */
u->buf = kmalloc(maxsize * u->packets, GFP_KERNEL);
if (! u->buf) {
release_substream_urbs(subs, 0);
return -ENOMEM;
}
}
u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
if (! u->urb) {
release_substream_urbs(subs, 0);
return -ENOMEM;
}
u->urb->dev = subs->dev;
u->urb->pipe = subs->datapipe;
u->urb->transfer_flags = URB_ISO_ASAP;
u->urb->number_of_packets = u->packets;
u->urb->interval = 1;
u->urb->context = u;
u->urb->complete = snd_usb_complete_callback(snd_complete_urb);
}
if (subs->syncpipe) {
/* allocate and initialize sync urbs */
for (i = 0; i < SYNC_URBS; i++) {
snd_urb_ctx_t *u = &subs->syncurb[i];
u->index = i;
u->subs = subs;
u->packets = 1;
u->urb = usb_alloc_urb(1, GFP_KERNEL);
if (! u->urb) {
release_substream_urbs(subs, 0);
return -ENOMEM;
}
u->urb->transfer_buffer = subs->syncbuf + i * 4;
u->urb->transfer_buffer_length = 4;
u->urb->dev = subs->dev;
u->urb->pipe = subs->syncpipe;
u->urb->transfer_flags = URB_ISO_ASAP;
u->urb->number_of_packets = 1;
u->urb->interval = 1 << subs->syncinterval;
u->urb->context = u;
u->urb->complete = snd_usb_complete_callback(snd_complete_sync_urb);
}
}
return 0;
}
/*
* find a matching audio format
*/
static struct audioformat *find_format(snd_usb_substream_t *subs, unsigned int format,
unsigned int rate, unsigned int channels)
{
struct list_head *p;
struct audioformat *found = NULL;
int cur_attr = 0, attr;
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
if (fp->format != format || fp->channels != channels)
continue;
if (rate < fp->rate_min || rate > fp->rate_max)
continue;
if (! (fp->rates & SNDRV_PCM_RATE_CONTINUOUS)) {
unsigned int i;
for (i = 0; i < fp->nr_rates; i++)
if (fp->rate_table[i] == rate)
break;
if (i >= fp->nr_rates)
continue;
}
attr = fp->ep_attr & EP_ATTR_MASK;
if (! found) {
found = fp;
cur_attr = attr;
continue;
}
/* avoid async out and adaptive in if the other method
* supports the same format.
* this is a workaround for the case like
* M-audio audiophile USB.
*/
if (attr != cur_attr) {
if ((attr == EP_ATTR_ASYNC &&
subs->direction == SNDRV_PCM_STREAM_PLAYBACK) ||
(attr == EP_ATTR_ADAPTIVE &&
subs->direction == SNDRV_PCM_STREAM_CAPTURE))
continue;
if ((cur_attr == EP_ATTR_ASYNC &&
subs->direction == SNDRV_PCM_STREAM_PLAYBACK) ||
(cur_attr == EP_ATTR_ADAPTIVE &&
subs->direction == SNDRV_PCM_STREAM_CAPTURE)) {
found = fp;
cur_attr = attr;
continue;
}
}
/* find the format with the largest max. packet size */
if (fp->maxpacksize > found->maxpacksize) {
found = fp;
cur_attr = attr;
}
}
return found;
}
/*
* initialize the picth control and sample rate
*/
static int init_usb_pitch(struct usb_device *dev, int iface,
struct usb_host_interface *alts,
struct audioformat *fmt)
{
unsigned int ep;
unsigned char data[1];
int err;
ep = get_endpoint(alts, 0)->bEndpointAddress;
/* if endpoint has pitch control, enable it */
if (fmt->attributes & EP_CS_ATTR_PITCH_CONTROL) {
data[0] = 1;
if ((err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR,
USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
snd_printk(KERN_ERR "%d:%d:%d: cannot set enable PITCH\n",
dev->devnum, iface, ep);
return err;
}
}
return 0;
}
static int init_usb_sample_rate(struct usb_device *dev, int iface,
struct usb_host_interface *alts,
struct audioformat *fmt, int rate)
{
unsigned int ep;
unsigned char data[3];
int err;
ep = get_endpoint(alts, 0)->bEndpointAddress;
/* if endpoint has sampling rate control, set it */
if (fmt->attributes & EP_CS_ATTR_SAMPLE_RATE) {
int crate;
data[0] = rate;
data[1] = rate >> 8;
data[2] = rate >> 16;
if ((err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR,
USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
snd_printk(KERN_ERR "%d:%d:%d: cannot set freq %d to ep 0x%x\n",
dev->devnum, iface, fmt->altsetting, rate, ep);
return err;
}
if ((err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR,
USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
snd_printk(KERN_WARNING "%d:%d:%d: cannot get freq at ep 0x%x\n",
dev->devnum, iface, fmt->altsetting, ep);
return 0; /* some devices don't support reading */
}
crate = data[0] | (data[1] << 8) | (data[2] << 16);
if (crate != rate) {
snd_printd(KERN_WARNING "current rate %d is different from the runtime rate %d\n", crate, rate);
// runtime->rate = crate;
}
}
return 0;
}
/*
* find a matching format and set up the interface
*/
static int set_format(snd_usb_substream_t *subs, struct audioformat *fmt)
{
struct usb_device *dev = subs->dev;
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
struct usb_interface *iface;
unsigned int ep, attr;
int is_playback = subs->direction == SNDRV_PCM_STREAM_PLAYBACK;
int err;
iface = usb_ifnum_to_if(dev, fmt->iface);
snd_assert(iface, return -EINVAL);
alts = &iface->altsetting[fmt->altset_idx];
altsd = get_iface_desc(alts);
snd_assert(altsd->bAlternateSetting == fmt->altsetting, return -EINVAL);
if (fmt == subs->cur_audiofmt)
return 0;
/* close the old interface */
if (subs->interface >= 0 && subs->interface != fmt->iface) {
usb_set_interface(subs->dev, subs->interface, 0);
subs->interface = -1;
subs->format = 0;
}
/* set interface */
if (subs->interface != fmt->iface || subs->format != fmt->altset_idx) {
if (usb_set_interface(dev, fmt->iface, fmt->altsetting) < 0) {
snd_printk(KERN_ERR "%d:%d:%d: usb_set_interface failed\n",
dev->devnum, fmt->iface, fmt->altsetting);
return -EIO;
}
snd_printdd(KERN_INFO "setting usb interface %d:%d\n", fmt->iface, fmt->altsetting);
subs->interface = fmt->iface;
subs->format = fmt->altset_idx;
}
/* create a data pipe */
ep = fmt->endpoint & USB_ENDPOINT_NUMBER_MASK;
if (is_playback)
subs->datapipe = usb_sndisocpipe(dev, ep);
else
subs->datapipe = usb_rcvisocpipe(dev, ep);
subs->syncpipe = subs->syncinterval = 0;
subs->maxpacksize = fmt->maxpacksize;
subs->fill_max = 0;
/* we need a sync pipe in async OUT or adaptive IN mode */
/* check the number of EP, since some devices have broken
* descriptors which fool us. if it has only one EP,
* assume it as adaptive-out or sync-in.
*/
attr = fmt->ep_attr & EP_ATTR_MASK;
if (((is_playback && attr == EP_ATTR_ASYNC) ||
(! is_playback && attr == EP_ATTR_ADAPTIVE)) &&
altsd->bNumEndpoints >= 2) {
/* check sync-pipe endpoint */
/* ... and check descriptor size before accessing bSynchAddress
because there is a version of the SB Audigy 2 NX firmware lacking
the audio fields in the endpoint descriptors */
if ((get_endpoint(alts, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != 0x01 ||
(get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
get_endpoint(alts, 1)->bSynchAddress != 0)) {
snd_printk(KERN_ERR "%d:%d:%d : invalid synch pipe\n",
dev->devnum, fmt->iface, fmt->altsetting);
return -EINVAL;
}
ep = get_endpoint(alts, 1)->bEndpointAddress;
if (get_endpoint(alts, 0)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
(( is_playback && ep != (unsigned int)(get_endpoint(alts, 0)->bSynchAddress | USB_DIR_IN)) ||
(!is_playback && ep != (unsigned int)(get_endpoint(alts, 0)->bSynchAddress & ~USB_DIR_IN)))) {
snd_printk(KERN_ERR "%d:%d:%d : invalid synch pipe\n",
dev->devnum, fmt->iface, fmt->altsetting);
return -EINVAL;
}
ep &= USB_ENDPOINT_NUMBER_MASK;
if (is_playback)
subs->syncpipe = usb_rcvisocpipe(dev, ep);
else
subs->syncpipe = usb_sndisocpipe(dev, ep);
if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
get_endpoint(alts, 1)->bRefresh >= 1 &&
get_endpoint(alts, 1)->bRefresh <= 9)
subs->syncinterval = get_endpoint(alts, 1)->bRefresh;
else
subs->syncinterval = 1;
}
/* always fill max packet size */
if (fmt->attributes & EP_CS_ATTR_FILL_MAX)
subs->fill_max = 1;
if ((err = init_usb_pitch(dev, subs->interface, alts, fmt)) < 0)
return err;
subs->cur_audiofmt = fmt;
#if 0
printk("setting done: format = %d, rate = %d, channels = %d\n",
fmt->format, fmt->rate, fmt->channels);
printk(" datapipe = 0x%0x, syncpipe = 0x%0x\n",
subs->datapipe, subs->syncpipe);
#endif
return 0;
}
/*
* hw_params callback
*
* allocate a buffer and set the given audio format.
*
* so far we use a physically linear buffer although packetize transfer
* doesn't need a continuous area.
* if sg buffer is supported on the later version of alsa, we'll follow
* that.
*/
static int snd_usb_hw_params(snd_pcm_substream_t *substream,
snd_pcm_hw_params_t *hw_params)
{
snd_usb_substream_t *subs = (snd_usb_substream_t *)substream->runtime->private_data;
struct audioformat *fmt;
unsigned int channels, rate, format;
int ret, changed;
ret = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
if (ret < 0)
return ret;
format = params_format(hw_params);
rate = params_rate(hw_params);
channels = params_channels(hw_params);
fmt = find_format(subs, format, rate, channels);
if (! fmt) {
snd_printd(KERN_DEBUG "cannot set format: format = %s, rate = %d, channels = %d\n",
snd_pcm_format_name(format), rate, channels);
return -EINVAL;
}
changed = subs->cur_audiofmt != fmt ||
subs->period_bytes != params_period_bytes(hw_params) ||
subs->cur_rate != rate;
if ((ret = set_format(subs, fmt)) < 0)
return ret;
if (subs->cur_rate != rate) {
struct usb_host_interface *alts;
struct usb_interface *iface;
iface = usb_ifnum_to_if(subs->dev, fmt->iface);
alts = &iface->altsetting[fmt->altset_idx];
ret = init_usb_sample_rate(subs->dev, subs->interface, alts, fmt, rate);
if (ret < 0)
return ret;
subs->cur_rate = rate;
}
if (changed) {
/* format changed */
release_substream_urbs(subs, 0);
/* influenced: period_bytes, channels, rate, format, */
ret = init_substream_urbs(subs, params_period_bytes(hw_params),
params_rate(hw_params),
snd_pcm_format_physical_width(params_format(hw_params)) * params_channels(hw_params));
}
return ret;
}
/*
* hw_free callback
*
* reset the audio format and release the buffer
*/
static int snd_usb_hw_free(snd_pcm_substream_t *substream)
{
snd_usb_substream_t *subs = (snd_usb_substream_t *)substream->runtime->private_data;
subs->cur_audiofmt = NULL;
subs->cur_rate = 0;
subs->period_bytes = 0;
release_substream_urbs(subs, 0);
return snd_pcm_lib_free_pages(substream);
}
/*
* prepare callback
*
* only a few subtle things...
*/
static int snd_usb_pcm_prepare(snd_pcm_substream_t *substream)
{
snd_pcm_runtime_t *runtime = substream->runtime;
snd_usb_substream_t *subs = (snd_usb_substream_t *)runtime->private_data;
if (! subs->cur_audiofmt) {
snd_printk(KERN_ERR "usbaudio: no format is specified!\n");
return -ENXIO;
}
/* some unit conversions in runtime */
subs->maxframesize = bytes_to_frames(runtime, subs->maxpacksize);
subs->curframesize = bytes_to_frames(runtime, subs->curpacksize);
/* reset the pointer */
subs->hwptr = 0;
subs->hwptr_done = 0;
subs->transfer_sched = 0;
subs->transfer_done = 0;
subs->phase = 0;
/* clear urbs (to be sure) */
deactivate_urbs(subs, 0, 1);
wait_clear_urbs(subs);
return 0;
}
static snd_pcm_hardware_t snd_usb_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
};
static snd_pcm_hardware_t snd_usb_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
};
/*
* h/w constraints
*/
#ifdef HW_CONST_DEBUG
#define hwc_debug(fmt, args...) printk(KERN_DEBUG fmt, ##args)
#else
#define hwc_debug(fmt, args...) /**/
#endif
static int hw_check_valid_format(snd_pcm_hw_params_t *params, struct audioformat *fp)
{
snd_interval_t *it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
snd_interval_t *ct = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
snd_mask_t *fmts = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
/* check the format */
if (! snd_mask_test(fmts, fp->format)) {
hwc_debug(" > check: no supported format %d\n", fp->format);
return 0;
}
/* check the channels */
if (fp->channels < ct->min || fp->channels > ct->max) {
hwc_debug(" > check: no valid channels %d (%d/%d)\n", fp->channels, ct->min, ct->max);
return 0;
}
/* check the rate is within the range */
if (fp->rate_min > it->max || (fp->rate_min == it->max && it->openmax)) {
hwc_debug(" > check: rate_min %d > max %d\n", fp->rate_min, it->max);
return 0;
}
if (fp->rate_max < it->min || (fp->rate_max == it->min && it->openmin)) {
hwc_debug(" > check: rate_max %d < min %d\n", fp->rate_max, it->min);
return 0;
}
return 1;
}
static int hw_rule_rate(snd_pcm_hw_params_t *params,
snd_pcm_hw_rule_t *rule)
{
snd_usb_substream_t *subs = rule->private;
struct list_head *p;
snd_interval_t *it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
unsigned int rmin, rmax;
int changed;
hwc_debug("hw_rule_rate: (%d,%d)\n", it->min, it->max);
changed = 0;
rmin = rmax = 0;
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
if (! hw_check_valid_format(params, fp))
continue;
if (changed++) {
if (rmin > fp->rate_min)
rmin = fp->rate_min;
if (rmax < fp->rate_max)
rmax = fp->rate_max;
} else {
rmin = fp->rate_min;
rmax = fp->rate_max;
}
}
if (! changed) {
hwc_debug(" --> get empty\n");
it->empty = 1;
return -EINVAL;
}
changed = 0;
if (it->min < rmin) {
it->min = rmin;
it->openmin = 0;
changed = 1;
}
if (it->max > rmax) {
it->max = rmax;
it->openmax = 0;
changed = 1;
}
if (snd_interval_checkempty(it)) {
it->empty = 1;
return -EINVAL;
}
hwc_debug(" --> (%d, %d) (changed = %d)\n", it->min, it->max, changed);
return changed;
}
static int hw_rule_channels(snd_pcm_hw_params_t *params,
snd_pcm_hw_rule_t *rule)
{
snd_usb_substream_t *subs = rule->private;
struct list_head *p;
snd_interval_t *it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
unsigned int rmin, rmax;
int changed;
hwc_debug("hw_rule_channels: (%d,%d)\n", it->min, it->max);
changed = 0;
rmin = rmax = 0;
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
if (! hw_check_valid_format(params, fp))
continue;
if (changed++) {
if (rmin > fp->channels)
rmin = fp->channels;
if (rmax < fp->channels)
rmax = fp->channels;
} else {
rmin = fp->channels;
rmax = fp->channels;
}
}
if (! changed) {
hwc_debug(" --> get empty\n");
it->empty = 1;
return -EINVAL;
}
changed = 0;
if (it->min < rmin) {
it->min = rmin;
it->openmin = 0;
changed = 1;
}
if (it->max > rmax) {
it->max = rmax;
it->openmax = 0;
changed = 1;
}
if (snd_interval_checkempty(it)) {
it->empty = 1;
return -EINVAL;
}
hwc_debug(" --> (%d, %d) (changed = %d)\n", it->min, it->max, changed);
return changed;
}
static int hw_rule_format(snd_pcm_hw_params_t *params,
snd_pcm_hw_rule_t *rule)
{
snd_usb_substream_t *subs = rule->private;
struct list_head *p;
snd_mask_t *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
u64 fbits;
u32 oldbits[2];
int changed;
hwc_debug("hw_rule_format: %x:%x\n", fmt->bits[0], fmt->bits[1]);
fbits = 0;
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
if (! hw_check_valid_format(params, fp))
continue;
fbits |= (1ULL << fp->format);
}
oldbits[0] = fmt->bits[0];
oldbits[1] = fmt->bits[1];
fmt->bits[0] &= (u32)fbits;
fmt->bits[1] &= (u32)(fbits >> 32);
if (! fmt->bits[0] && ! fmt->bits[1]) {
hwc_debug(" --> get empty\n");
return -EINVAL;
}
changed = (oldbits[0] != fmt->bits[0] || oldbits[1] != fmt->bits[1]);
hwc_debug(" --> %x:%x (changed = %d)\n", fmt->bits[0], fmt->bits[1], changed);
return changed;
}
#define MAX_MASK 64
/*
* check whether the registered audio formats need special hw-constraints
*/
static int check_hw_params_convention(snd_usb_substream_t *subs)
{
int i;
u32 *channels;
u32 *rates;
u32 cmaster, rmaster;
u32 rate_min = 0, rate_max = 0;
struct list_head *p;
int err = 1;
channels = kcalloc(MAX_MASK, sizeof(u32), GFP_KERNEL);
rates = kcalloc(MAX_MASK, sizeof(u32), GFP_KERNEL);
list_for_each(p, &subs->fmt_list) {
struct audioformat *f;
f = list_entry(p, struct audioformat, list);
/* unconventional channels? */
if (f->channels > 32)
goto __out;
/* continuous rate min/max matches? */
if (f->rates & SNDRV_PCM_RATE_CONTINUOUS) {
if (rate_min && f->rate_min != rate_min)
goto __out;
if (rate_max && f->rate_max != rate_max)
goto __out;
rate_min = f->rate_min;
rate_max = f->rate_max;
}
/* combination of continuous rates and fixed rates? */
if (rates[f->format] & SNDRV_PCM_RATE_CONTINUOUS) {
if (f->rates != rates[f->format])
goto __out;
}
if (f->rates & SNDRV_PCM_RATE_CONTINUOUS) {
if (rates[f->format] && rates[f->format] != f->rates)
goto __out;
}
channels[f->format] |= (1 << f->channels);
rates[f->format] |= f->rates;
}
/* check whether channels and rates match for all formats */
cmaster = rmaster = 0;
for (i = 0; i < MAX_MASK; i++) {
if (cmaster != channels[i] && cmaster && channels[i])
goto __out;
if (rmaster != rates[i] && rmaster && rates[i])
goto __out;
if (channels[i])
cmaster = channels[i];
if (rates[i])
rmaster = rates[i];
}
/* check whether channels match for all distinct rates */
memset(channels, 0, MAX_MASK * sizeof(u32));
list_for_each(p, &subs->fmt_list) {
struct audioformat *f;
f = list_entry(p, struct audioformat, list);
if (f->rates & SNDRV_PCM_RATE_CONTINUOUS)
continue;
for (i = 0; i < 32; i++) {
if (f->rates & (1 << i))
channels[i] |= (1 << f->channels);
}
}
cmaster = 0;
for (i = 0; i < 32; i++) {
if (cmaster != channels[i] && cmaster && channels[i])
goto __out;
if (channels[i])
cmaster = channels[i];
}
err = 0;
__out:
kfree(channels);
kfree(rates);
return err;
}
/*
* set up the runtime hardware information.
*/
static int setup_hw_info(snd_pcm_runtime_t *runtime, snd_usb_substream_t *subs)
{
struct list_head *p;
int err;
runtime->hw.formats = subs->formats;
runtime->hw.rate_min = 0x7fffffff;
runtime->hw.rate_max = 0;
runtime->hw.channels_min = 256;
runtime->hw.channels_max = 0;
runtime->hw.rates = 0;
/* check min/max rates and channels */
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
runtime->hw.rates |= fp->rates;
if (runtime->hw.rate_min > fp->rate_min)
runtime->hw.rate_min = fp->rate_min;
if (runtime->hw.rate_max < fp->rate_max)
runtime->hw.rate_max = fp->rate_max;
if (runtime->hw.channels_min > fp->channels)
runtime->hw.channels_min = fp->channels;
if (runtime->hw.channels_max < fp->channels)
runtime->hw.channels_max = fp->channels;
if (fp->fmt_type == USB_FORMAT_TYPE_II && fp->frame_size > 0) {
/* FIXME: there might be more than one audio formats... */
runtime->hw.period_bytes_min = runtime->hw.period_bytes_max =
fp->frame_size;
}
}
/* set the period time minimum 1ms */
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1000 * MIN_PACKS_URB,
/*(nrpacks * MAX_URBS) * 1000*/ UINT_MAX);
if (check_hw_params_convention(subs)) {
hwc_debug("setting extra hw constraints...\n");
if ((err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
hw_rule_rate, subs,
SNDRV_PCM_HW_PARAM_FORMAT,
SNDRV_PCM_HW_PARAM_CHANNELS,
-1)) < 0)
return err;
if ((err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
hw_rule_channels, subs,
SNDRV_PCM_HW_PARAM_FORMAT,
SNDRV_PCM_HW_PARAM_RATE,
-1)) < 0)
return err;
if ((err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
hw_rule_format, subs,
SNDRV_PCM_HW_PARAM_RATE,
SNDRV_PCM_HW_PARAM_CHANNELS,
-1)) < 0)
return err;
}
return 0;
}
static int snd_usb_pcm_open(snd_pcm_substream_t *substream, int direction,
snd_pcm_hardware_t *hw)
{
snd_usb_stream_t *as = snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
snd_usb_substream_t *subs = &as->substream[direction];
subs->interface = -1;
subs->format = 0;
runtime->hw = *hw;
runtime->private_data = subs;
subs->pcm_substream = substream;
return setup_hw_info(runtime, subs);
}
static int snd_usb_pcm_close(snd_pcm_substream_t *substream, int direction)
{
snd_usb_stream_t *as = snd_pcm_substream_chip(substream);
snd_usb_substream_t *subs = &as->substream[direction];
if (subs->interface >= 0) {
usb_set_interface(subs->dev, subs->interface, 0);
subs->interface = -1;
}
subs->pcm_substream = NULL;
return 0;
}
static int snd_usb_playback_open(snd_pcm_substream_t *substream)
{
return snd_usb_pcm_open(substream, SNDRV_PCM_STREAM_PLAYBACK, &snd_usb_playback);
}
static int snd_usb_playback_close(snd_pcm_substream_t *substream)
{
return snd_usb_pcm_close(substream, SNDRV_PCM_STREAM_PLAYBACK);
}
static int snd_usb_capture_open(snd_pcm_substream_t *substream)
{
return snd_usb_pcm_open(substream, SNDRV_PCM_STREAM_CAPTURE, &snd_usb_capture);
}
static int snd_usb_capture_close(snd_pcm_substream_t *substream)
{
return snd_usb_pcm_close(substream, SNDRV_PCM_STREAM_CAPTURE);
}
static snd_pcm_ops_t snd_usb_playback_ops = {
.open = snd_usb_playback_open,
.close = snd_usb_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_usb_hw_params,
.hw_free = snd_usb_hw_free,
.prepare = snd_usb_pcm_prepare,
.trigger = snd_usb_pcm_trigger,
.pointer = snd_usb_pcm_pointer,
};
static snd_pcm_ops_t snd_usb_capture_ops = {
.open = snd_usb_capture_open,
.close = snd_usb_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_usb_hw_params,
.hw_free = snd_usb_hw_free,
.prepare = snd_usb_pcm_prepare,
.trigger = snd_usb_pcm_trigger,
.pointer = snd_usb_pcm_pointer,
};
/*
* helper functions
*/
/*
* combine bytes and get an integer value
*/
unsigned int snd_usb_combine_bytes(unsigned char *bytes, int size)
{
switch (size) {
case 1: return *bytes;
case 2: return combine_word(bytes);
case 3: return combine_triple(bytes);
case 4: return combine_quad(bytes);
default: return 0;
}
}
/*
* parse descriptor buffer and return the pointer starting the given
* descriptor type.
*/
void *snd_usb_find_desc(void *descstart, int desclen, void *after, u8 dtype)
{
u8 *p, *end, *next;
p = descstart;
end = p + desclen;
for (; p < end;) {
if (p[0] < 2)
return NULL;
next = p + p[0];
if (next > end)
return NULL;
if (p[1] == dtype && (!after || (void *)p > after)) {
return p;
}
p = next;
}
return NULL;
}
/*
* find a class-specified interface descriptor with the given subtype.
*/
void *snd_usb_find_csint_desc(void *buffer, int buflen, void *after, u8 dsubtype)
{
unsigned char *p = after;
while ((p = snd_usb_find_desc(buffer, buflen, p,
USB_DT_CS_INTERFACE)) != NULL) {
if (p[0] >= 3 && p[2] == dsubtype)
return p;
}
return NULL;
}
/*
* Wrapper for usb_control_msg().
* Allocates a temp buffer to prevent dmaing from/to the stack.
*/
int snd_usb_ctl_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
__u8 requesttype, __u16 value, __u16 index, void *data,
__u16 size, int timeout)
{
int err;
void *buf = NULL;
if (size > 0) {
buf = kmalloc(size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
memcpy(buf, data, size);
}
err = usb_control_msg(dev, pipe, request, requesttype,
value, index, buf, size, timeout);
if (size > 0) {
memcpy(data, buf, size);
kfree(buf);
}
return err;
}
/*
* entry point for linux usb interface
*/
static int usb_audio_probe(struct usb_interface *intf,
const struct usb_device_id *id);
static void usb_audio_disconnect(struct usb_interface *intf);
static struct usb_device_id usb_audio_ids [] = {
#include "usbquirks.h"
{ .match_flags = (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS),
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIO_CONTROL },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, usb_audio_ids);
static struct usb_driver usb_audio_driver = {
.owner = THIS_MODULE,
.name = "snd-usb-audio",
.probe = usb_audio_probe,
.disconnect = usb_audio_disconnect,
.id_table = usb_audio_ids,
};
/*
* proc interface for list the supported pcm formats
*/
static void proc_dump_substream_formats(snd_usb_substream_t *subs, snd_info_buffer_t *buffer)
{
struct list_head *p;
static char *sync_types[4] = {
"NONE", "ASYNC", "ADAPTIVE", "SYNC"
};
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
snd_iprintf(buffer, " Interface %d\n", fp->iface);
snd_iprintf(buffer, " Altset %d\n", fp->altsetting);
snd_iprintf(buffer, " Format: %s\n", snd_pcm_format_name(fp->format));
snd_iprintf(buffer, " Channels: %d\n", fp->channels);
snd_iprintf(buffer, " Endpoint: %d %s (%s)\n",
fp->endpoint & USB_ENDPOINT_NUMBER_MASK,
fp->endpoint & USB_DIR_IN ? "IN" : "OUT",
sync_types[(fp->ep_attr & EP_ATTR_MASK) >> 2]);
if (fp->rates & SNDRV_PCM_RATE_CONTINUOUS) {
snd_iprintf(buffer, " Rates: %d - %d (continuous)\n",
fp->rate_min, fp->rate_max);
} else {
unsigned int i;
snd_iprintf(buffer, " Rates: ");
for (i = 0; i < fp->nr_rates; i++) {
if (i > 0)
snd_iprintf(buffer, ", ");
snd_iprintf(buffer, "%d", fp->rate_table[i]);
}
snd_iprintf(buffer, "\n");
}
// snd_iprintf(buffer, " Max Packet Size = %d\n", fp->maxpacksize);
// snd_iprintf(buffer, " EP Attribute = 0x%x\n", fp->attributes);
}
}
static void proc_dump_substream_status(snd_usb_substream_t *subs, snd_info_buffer_t *buffer)
{
if (subs->running) {
unsigned int i;
snd_iprintf(buffer, " Status: Running\n");
snd_iprintf(buffer, " Interface = %d\n", subs->interface);
snd_iprintf(buffer, " Altset = %d\n", subs->format);
snd_iprintf(buffer, " URBs = %d [ ", subs->nurbs);
for (i = 0; i < subs->nurbs; i++)
snd_iprintf(buffer, "%d ", subs->dataurb[i].packets);
snd_iprintf(buffer, "]\n");
snd_iprintf(buffer, " Packet Size = %d\n", subs->curpacksize);
snd_iprintf(buffer, " Momentary freq = %u Hz (%#x.%04x)\n",
snd_usb_get_speed(subs->dev) == USB_SPEED_FULL
? get_full_speed_hz(subs->freqm)
: get_high_speed_hz(subs->freqm),
subs->freqm >> 16, subs->freqm & 0xffff);
} else {
snd_iprintf(buffer, " Status: Stop\n");
}
}
static void proc_pcm_format_read(snd_info_entry_t *entry, snd_info_buffer_t *buffer)
{
snd_usb_stream_t *stream = entry->private_data;
snd_iprintf(buffer, "%s : %s\n", stream->chip->card->longname, stream->pcm->name);
if (stream->substream[SNDRV_PCM_STREAM_PLAYBACK].num_formats) {
snd_iprintf(buffer, "\nPlayback:\n");
proc_dump_substream_status(&stream->substream[SNDRV_PCM_STREAM_PLAYBACK], buffer);
proc_dump_substream_formats(&stream->substream[SNDRV_PCM_STREAM_PLAYBACK], buffer);
}
if (stream->substream[SNDRV_PCM_STREAM_CAPTURE].num_formats) {
snd_iprintf(buffer, "\nCapture:\n");
proc_dump_substream_status(&stream->substream[SNDRV_PCM_STREAM_CAPTURE], buffer);
proc_dump_substream_formats(&stream->substream[SNDRV_PCM_STREAM_CAPTURE], buffer);
}
}
static void proc_pcm_format_add(snd_usb_stream_t *stream)
{
snd_info_entry_t *entry;
char name[32];
snd_card_t *card = stream->chip->card;
sprintf(name, "stream%d", stream->pcm_index);
if (! snd_card_proc_new(card, name, &entry))
snd_info_set_text_ops(entry, stream, 1024, proc_pcm_format_read);
}
/*
* initialize the substream instance.
*/
static void init_substream(snd_usb_stream_t *as, int stream, struct audioformat *fp)
{
snd_usb_substream_t *subs = &as->substream[stream];
INIT_LIST_HEAD(&subs->fmt_list);
spin_lock_init(&subs->lock);
subs->stream = as;
subs->direction = stream;
subs->dev = as->chip->dev;
if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL)
subs->ops = audio_urb_ops[stream];
else
subs->ops = audio_urb_ops_high_speed[stream];
snd_pcm_lib_preallocate_pages(as->pcm->streams[stream].substream,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
64 * 1024, 128 * 1024);
snd_pcm_set_ops(as->pcm, stream,
stream == SNDRV_PCM_STREAM_PLAYBACK ?
&snd_usb_playback_ops : &snd_usb_capture_ops);
list_add_tail(&fp->list, &subs->fmt_list);
subs->formats |= 1ULL << fp->format;
subs->endpoint = fp->endpoint;
subs->num_formats++;
subs->fmt_type = fp->fmt_type;
}
/*
* free a substream
*/
static void free_substream(snd_usb_substream_t *subs)
{
struct list_head *p, *n;
if (! subs->num_formats)
return; /* not initialized */
list_for_each_safe(p, n, &subs->fmt_list) {
struct audioformat *fp = list_entry(p, struct audioformat, list);
kfree(fp->rate_table);
kfree(fp);
}
}
/*
* free a usb stream instance
*/
static void snd_usb_audio_stream_free(snd_usb_stream_t *stream)
{
free_substream(&stream->substream[0]);
free_substream(&stream->substream[1]);
list_del(&stream->list);
kfree(stream);
}
static void snd_usb_audio_pcm_free(snd_pcm_t *pcm)
{
snd_usb_stream_t *stream = pcm->private_data;
if (stream) {
stream->pcm = NULL;
snd_pcm_lib_preallocate_free_for_all(pcm);
snd_usb_audio_stream_free(stream);
}
}
/*
* add this endpoint to the chip instance.
* if a stream with the same endpoint already exists, append to it.
* if not, create a new pcm stream.
*/
static int add_audio_endpoint(snd_usb_audio_t *chip, int stream, struct audioformat *fp)
{
struct list_head *p;
snd_usb_stream_t *as;
snd_usb_substream_t *subs;
snd_pcm_t *pcm;
int err;
list_for_each(p, &chip->pcm_list) {
as = list_entry(p, snd_usb_stream_t, list);
if (as->fmt_type != fp->fmt_type)
continue;
subs = &as->substream[stream];
if (! subs->endpoint)
continue;
if (subs->endpoint == fp->endpoint) {
list_add_tail(&fp->list, &subs->fmt_list);
subs->num_formats++;
subs->formats |= 1ULL << fp->format;
return 0;
}
}
/* look for an empty stream */
list_for_each(p, &chip->pcm_list) {
as = list_entry(p, snd_usb_stream_t, list);
if (as->fmt_type != fp->fmt_type)
continue;
subs = &as->substream[stream];
if (subs->endpoint)
continue;
err = snd_pcm_new_stream(as->pcm, stream, 1);
if (err < 0)
return err;
init_substream(as, stream, fp);
return 0;
}
/* create a new pcm */
as = kmalloc(sizeof(*as), GFP_KERNEL);
if (! as)
return -ENOMEM;
memset(as, 0, sizeof(*as));
as->pcm_index = chip->pcm_devs;
as->chip = chip;
as->fmt_type = fp->fmt_type;
err = snd_pcm_new(chip->card, "USB Audio", chip->pcm_devs,
stream == SNDRV_PCM_STREAM_PLAYBACK ? 1 : 0,
stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1,
&pcm);
if (err < 0) {
kfree(as);
return err;
}
as->pcm = pcm;
pcm->private_data = as;
pcm->private_free = snd_usb_audio_pcm_free;
pcm->info_flags = 0;
if (chip->pcm_devs > 0)
sprintf(pcm->name, "USB Audio #%d", chip->pcm_devs);
else
strcpy(pcm->name, "USB Audio");
init_substream(as, stream, fp);
list_add(&as->list, &chip->pcm_list);
chip->pcm_devs++;
proc_pcm_format_add(as);
return 0;
}
/*
* check if the device uses big-endian samples
*/
static int is_big_endian_format(snd_usb_audio_t *chip, struct audioformat *fp)
{
switch (chip->usb_id) {
case USB_ID(0x0763, 0x2001): /* M-Audio Quattro: captured data only */
if (fp->endpoint & USB_DIR_IN)
return 1;
break;
case USB_ID(0x0763, 0x2003): /* M-Audio Audiophile USB */
return 1;
}
return 0;
}
/*
* parse the audio format type I descriptor
* and returns the corresponding pcm format
*
* @dev: usb device
* @fp: audioformat record
* @format: the format tag (wFormatTag)
* @fmt: the format type descriptor
*/
static int parse_audio_format_i_type(snd_usb_audio_t *chip, struct audioformat *fp,
int format, unsigned char *fmt)
{
int pcm_format;
int sample_width, sample_bytes;
/* FIXME: correct endianess and sign? */
pcm_format = -1;
sample_width = fmt[6];
sample_bytes = fmt[5];
switch (format) {
case 0: /* some devices don't define this correctly... */
snd_printdd(KERN_INFO "%d:%u:%d : format type 0 is detected, processed as PCM\n",
chip->dev->devnum, fp->iface, fp->altsetting);
/* fall-through */
case USB_AUDIO_FORMAT_PCM:
if (sample_width > sample_bytes * 8) {
snd_printk(KERN_INFO "%d:%u:%d : sample bitwidth %d in over sample bytes %d\n",
chip->dev->devnum, fp->iface, fp->altsetting,
sample_width, sample_bytes);
}
/* check the format byte size */
switch (fmt[5]) {
case 1:
pcm_format = SNDRV_PCM_FORMAT_S8;
break;
case 2:
if (is_big_endian_format(chip, fp))
pcm_format = SNDRV_PCM_FORMAT_S16_BE; /* grrr, big endian!! */
else
pcm_format = SNDRV_PCM_FORMAT_S16_LE;
break;
case 3:
if (is_big_endian_format(chip, fp))
pcm_format = SNDRV_PCM_FORMAT_S24_3BE; /* grrr, big endian!! */
else
pcm_format = SNDRV_PCM_FORMAT_S24_3LE;
break;
case 4:
pcm_format = SNDRV_PCM_FORMAT_S32_LE;
break;
default:
snd_printk(KERN_INFO "%d:%u:%d : unsupported sample bitwidth %d in %d bytes\n",
chip->dev->devnum, fp->iface,
fp->altsetting, sample_width, sample_bytes);
break;
}
break;
case USB_AUDIO_FORMAT_PCM8:
/* Dallas DS4201 workaround */
if (chip->usb_id == USB_ID(0x04fa, 0x4201))
pcm_format = SNDRV_PCM_FORMAT_S8;
else
pcm_format = SNDRV_PCM_FORMAT_U8;
break;
case USB_AUDIO_FORMAT_IEEE_FLOAT:
pcm_format = SNDRV_PCM_FORMAT_FLOAT_LE;
break;
case USB_AUDIO_FORMAT_ALAW:
pcm_format = SNDRV_PCM_FORMAT_A_LAW;
break;
case USB_AUDIO_FORMAT_MU_LAW:
pcm_format = SNDRV_PCM_FORMAT_MU_LAW;
break;
default:
snd_printk(KERN_INFO "%d:%u:%d : unsupported format type %d\n",
chip->dev->devnum, fp->iface, fp->altsetting, format);
break;
}
return pcm_format;
}
/*
* parse the format descriptor and stores the possible sample rates
* on the audioformat table.
*
* @dev: usb device
* @fp: audioformat record
* @fmt: the format descriptor
* @offset: the start offset of descriptor pointing the rate type
* (7 for type I and II, 8 for type II)
*/
static int parse_audio_format_rates(snd_usb_audio_t *chip, struct audioformat *fp,
unsigned char *fmt, int offset)
{
int nr_rates = fmt[offset];
if (fmt[0] < offset + 1 + 3 * (nr_rates ? nr_rates : 2)) {
snd_printk(KERN_ERR "%d:%u:%d : invalid FORMAT_TYPE desc\n",
chip->dev->devnum, fp->iface, fp->altsetting);
return -1;
}
if (nr_rates) {
/*
* build the rate table and bitmap flags
*/
int r, idx, c;
/* this table corresponds to the SNDRV_PCM_RATE_XXX bit */
static unsigned int conv_rates[] = {
5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000,
64000, 88200, 96000, 176400, 192000
};
fp->rate_table = kmalloc(sizeof(int) * nr_rates, GFP_KERNEL);
if (fp->rate_table == NULL) {
snd_printk(KERN_ERR "cannot malloc\n");
return -1;
}
fp->nr_rates = nr_rates;
fp->rate_min = fp->rate_max = combine_triple(&fmt[8]);
for (r = 0, idx = offset + 1; r < nr_rates; r++, idx += 3) {
unsigned int rate = fp->rate_table[r] = combine_triple(&fmt[idx]);
if (rate < fp->rate_min)
fp->rate_min = rate;
else if (rate > fp->rate_max)
fp->rate_max = rate;
for (c = 0; c < (int)ARRAY_SIZE(conv_rates); c++) {
if (rate == conv_rates[c]) {
fp->rates |= (1 << c);
break;
}
}
}
} else {
/* continuous rates */
fp->rates = SNDRV_PCM_RATE_CONTINUOUS;
fp->rate_min = combine_triple(&fmt[offset + 1]);
fp->rate_max = combine_triple(&fmt[offset + 4]);
}
return 0;
}
/*
* parse the format type I and III descriptors
*/
static int parse_audio_format_i(snd_usb_audio_t *chip, struct audioformat *fp,
int format, unsigned char *fmt)
{
int pcm_format;
if (fmt[3] == USB_FORMAT_TYPE_III) {
/* FIXME: the format type is really IECxxx
* but we give normal PCM format to get the existing
* apps working...
*/
pcm_format = SNDRV_PCM_FORMAT_S16_LE;
} else {
pcm_format = parse_audio_format_i_type(chip, fp, format, fmt);
if (pcm_format < 0)
return -1;
}
fp->format = pcm_format;
fp->channels = fmt[4];
if (fp->channels < 1) {
snd_printk(KERN_ERR "%d:%u:%d : invalid channels %d\n",
chip->dev->devnum, fp->iface, fp->altsetting, fp->channels);
return -1;
}
return parse_audio_format_rates(chip, fp, fmt, 7);
}
/*
* prase the format type II descriptor
*/
static int parse_audio_format_ii(snd_usb_audio_t *chip, struct audioformat *fp,
int format, unsigned char *fmt)
{
int brate, framesize;
switch (format) {
case USB_AUDIO_FORMAT_AC3:
/* FIXME: there is no AC3 format defined yet */
// fp->format = SNDRV_PCM_FORMAT_AC3;
fp->format = SNDRV_PCM_FORMAT_U8; /* temporarily hack to receive byte streams */
break;
case USB_AUDIO_FORMAT_MPEG:
fp->format = SNDRV_PCM_FORMAT_MPEG;
break;
default:
snd_printd(KERN_INFO "%d:%u:%d : unknown format tag 0x%x is detected. processed as MPEG.\n",
chip->dev->devnum, fp->iface, fp->altsetting, format);
fp->format = SNDRV_PCM_FORMAT_MPEG;
break;
}
fp->channels = 1;
brate = combine_word(&fmt[4]); /* fmt[4,5] : wMaxBitRate (in kbps) */
framesize = combine_word(&fmt[6]); /* fmt[6,7]: wSamplesPerFrame */
snd_printd(KERN_INFO "found format II with max.bitrate = %d, frame size=%d\n", brate, framesize);
fp->frame_size = framesize;
return parse_audio_format_rates(chip, fp, fmt, 8); /* fmt[8..] sample rates */
}
static int parse_audio_format(snd_usb_audio_t *chip, struct audioformat *fp,
int format, unsigned char *fmt, int stream)
{
int err;
switch (fmt[3]) {
case USB_FORMAT_TYPE_I:
case USB_FORMAT_TYPE_III:
err = parse_audio_format_i(chip, fp, format, fmt);
break;
case USB_FORMAT_TYPE_II:
err = parse_audio_format_ii(chip, fp, format, fmt);
break;
default:
snd_printd(KERN_INFO "%d:%u:%d : format type %d is not supported yet\n",
chip->dev->devnum, fp->iface, fp->altsetting, fmt[3]);
return -1;
}
fp->fmt_type = fmt[3];
if (err < 0)
return err;
#if 1
/* FIXME: temporary hack for extigy/audigy 2 nx */
/* extigy apparently supports sample rates other than 48k
* but not in ordinary way. so we enable only 48k atm.
*/
if (chip->usb_id == USB_ID(0x041e, 0x3000) ||
chip->usb_id == USB_ID(0x041e, 0x3020)) {
if (fmt[3] == USB_FORMAT_TYPE_I &&
stream == SNDRV_PCM_STREAM_PLAYBACK &&
fp->rates != SNDRV_PCM_RATE_48000 &&
fp->rates != SNDRV_PCM_RATE_96000)
return -1; /* use 48k only */
}
#endif
return 0;
}
static int parse_audio_endpoints(snd_usb_audio_t *chip, int iface_no)
{
struct usb_device *dev;
struct usb_interface *iface;
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
int i, altno, err, stream;
int format;
struct audioformat *fp;
unsigned char *fmt, *csep;
dev = chip->dev;
/* parse the interface's altsettings */
iface = usb_ifnum_to_if(dev, iface_no);
for (i = 0; i < iface->num_altsetting; i++) {
alts = &iface->altsetting[i];
altsd = get_iface_desc(alts);
/* skip invalid one */
if ((altsd->bInterfaceClass != USB_CLASS_AUDIO &&
altsd->bInterfaceClass != USB_CLASS_VENDOR_SPEC) ||
(altsd->bInterfaceSubClass != USB_SUBCLASS_AUDIO_STREAMING &&
altsd->bInterfaceSubClass != USB_SUBCLASS_VENDOR_SPEC) ||
altsd->bNumEndpoints < 1 ||
le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize) == 0)
continue;
/* must be isochronous */
if ((get_endpoint(alts, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) !=
USB_ENDPOINT_XFER_ISOC)
continue;
/* check direction */
stream = (get_endpoint(alts, 0)->bEndpointAddress & USB_DIR_IN) ?
SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
altno = altsd->bAlternateSetting;
/* get audio formats */
fmt = snd_usb_find_csint_desc(alts->extra, alts->extralen, NULL, AS_GENERAL);
if (!fmt) {
snd_printk(KERN_ERR "%d:%u:%d : AS_GENERAL descriptor not found\n",
dev->devnum, iface_no, altno);
continue;
}
if (fmt[0] < 7) {
snd_printk(KERN_ERR "%d:%u:%d : invalid AS_GENERAL desc\n",
dev->devnum, iface_no, altno);
continue;
}
format = (fmt[6] << 8) | fmt[5]; /* remember the format value */
/* get format type */
fmt = snd_usb_find_csint_desc(alts->extra, alts->extralen, NULL, FORMAT_TYPE);
if (!fmt) {
snd_printk(KERN_ERR "%d:%u:%d : no FORMAT_TYPE desc\n",
dev->devnum, iface_no, altno);
continue;
}
if (fmt[0] < 8) {
snd_printk(KERN_ERR "%d:%u:%d : invalid FORMAT_TYPE desc\n",
dev->devnum, iface_no, altno);
continue;
}
csep = snd_usb_find_desc(alts->endpoint[0].extra, alts->endpoint[0].extralen, NULL, USB_DT_CS_ENDPOINT);
/* Creamware Noah has this descriptor after the 2nd endpoint */
if (!csep && altsd->bNumEndpoints >= 2)
csep = snd_usb_find_desc(alts->endpoint[1].extra, alts->endpoint[1].extralen, NULL, USB_DT_CS_ENDPOINT);
if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
snd_printk(KERN_ERR "%d:%u:%d : no or invalid class specific endpoint descriptor\n",
dev->devnum, iface_no, altno);
continue;
}
fp = kmalloc(sizeof(*fp), GFP_KERNEL);
if (! fp) {
snd_printk(KERN_ERR "cannot malloc\n");
return -ENOMEM;
}
memset(fp, 0, sizeof(*fp));
fp->iface = iface_no;
fp->altsetting = altno;
fp->altset_idx = i;
fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress;
fp->ep_attr = get_endpoint(alts, 0)->bmAttributes;
/* FIXME: decode wMaxPacketSize of high bandwith endpoints */
fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize);
fp->attributes = csep[3];
/* some quirks for attributes here */
/* workaround for AudioTrak Optoplay */
if (chip->usb_id == USB_ID(0x0a92, 0x0053)) {
/* Optoplay sets the sample rate attribute although
* it seems not supporting it in fact.
*/
fp->attributes &= ~EP_CS_ATTR_SAMPLE_RATE;
}
/* workaround for M-Audio Audiophile USB */
if (chip->usb_id == USB_ID(0x0763, 0x2003)) {
/* doesn't set the sample rate attribute, but supports it */
fp->attributes |= EP_CS_ATTR_SAMPLE_RATE;
}
/*
* plantronics headset and Griffin iMic have set adaptive-in
* although it's really not...
*/
if (chip->usb_id == USB_ID(0x047f, 0x0ca1) ||
/* Griffin iMic (note that there is an older model 77d:223) */
chip->usb_id == USB_ID(0x077d, 0x07af)) {
fp->ep_attr &= ~EP_ATTR_MASK;
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
fp->ep_attr |= EP_ATTR_ADAPTIVE;
else
fp->ep_attr |= EP_ATTR_SYNC;
}
/* ok, let's parse further... */
if (parse_audio_format(chip, fp, format, fmt, stream) < 0) {
kfree(fp->rate_table);
kfree(fp);
continue;
}
snd_printdd(KERN_INFO "%d:%u:%d: add audio endpoint 0x%x\n", dev->devnum, iface_no, i, fp->endpoint);
err = add_audio_endpoint(chip, stream, fp);
if (err < 0) {
kfree(fp->rate_table);
kfree(fp);
return err;
}
/* try to set the interface... */
usb_set_interface(chip->dev, iface_no, altno);
init_usb_pitch(chip->dev, iface_no, alts, fp);
init_usb_sample_rate(chip->dev, iface_no, alts, fp, fp->rate_max);
}
return 0;
}
/*
* disconnect streams
* called from snd_usb_audio_disconnect()
*/
static void snd_usb_stream_disconnect(struct list_head *head)
{
int idx;
snd_usb_stream_t *as;
snd_usb_substream_t *subs;
as = list_entry(head, snd_usb_stream_t, list);
for (idx = 0; idx < 2; idx++) {
subs = &as->substream[idx];
if (!subs->num_formats)
return;
release_substream_urbs(subs, 1);
subs->interface = -1;
}
}
/*
* parse audio control descriptor and create pcm/midi streams
*/
static int snd_usb_create_streams(snd_usb_audio_t *chip, int ctrlif)
{
struct usb_device *dev = chip->dev;
struct usb_host_interface *host_iface;
struct usb_interface *iface;
unsigned char *p1;
int i, j;
/* find audiocontrol interface */
host_iface = &usb_ifnum_to_if(dev, ctrlif)->altsetting[0];
if (!(p1 = snd_usb_find_csint_desc(host_iface->extra, host_iface->extralen, NULL, HEADER))) {
snd_printk(KERN_ERR "cannot find HEADER\n");
return -EINVAL;
}
if (! p1[7] || p1[0] < 8 + p1[7]) {
snd_printk(KERN_ERR "invalid HEADER\n");
return -EINVAL;
}
/*
* parse all USB audio streaming interfaces
*/
for (i = 0; i < p1[7]; i++) {
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
j = p1[8 + i];
iface = usb_ifnum_to_if(dev, j);
if (!iface) {
snd_printk(KERN_ERR "%d:%u:%d : does not exist\n",
dev->devnum, ctrlif, j);
continue;
}
if (usb_interface_claimed(iface)) {
snd_printdd(KERN_INFO "%d:%d:%d: skipping, already claimed\n", dev->devnum, ctrlif, j);
continue;
}
alts = &iface->altsetting[0];
altsd = get_iface_desc(alts);
if ((altsd->bInterfaceClass == USB_CLASS_AUDIO ||
altsd->bInterfaceClass == USB_CLASS_VENDOR_SPEC) &&
altsd->bInterfaceSubClass == USB_SUBCLASS_MIDI_STREAMING) {
if (snd_usb_create_midi_interface(chip, iface, NULL) < 0) {
snd_printk(KERN_ERR "%d:%u:%d: cannot create sequencer device\n", dev->devnum, ctrlif, j);
continue;
}
usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1L);
continue;
}
if ((altsd->bInterfaceClass != USB_CLASS_AUDIO &&
altsd->bInterfaceClass != USB_CLASS_VENDOR_SPEC) ||
altsd->bInterfaceSubClass != USB_SUBCLASS_AUDIO_STREAMING) {
snd_printdd(KERN_ERR "%d:%u:%d: skipping non-supported interface %d\n", dev->devnum, ctrlif, j, altsd->bInterfaceClass);
/* skip non-supported classes */
continue;
}
if (! parse_audio_endpoints(chip, j)) {
usb_set_interface(dev, j, 0); /* reset the current interface */
usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1L);
}
}
return 0;
}
/*
* create a stream for an endpoint/altsetting without proper descriptors
*/
static int create_fixed_stream_quirk(snd_usb_audio_t *chip,
struct usb_interface *iface,
const snd_usb_audio_quirk_t *quirk)
{
struct audioformat *fp;
struct usb_host_interface *alts;
int stream, err;
int *rate_table = NULL;
fp = kmalloc(sizeof(*fp), GFP_KERNEL);
if (! fp) {
snd_printk(KERN_ERR "cannot malloc\n");
return -ENOMEM;
}
memcpy(fp, quirk->data, sizeof(*fp));
if (fp->nr_rates > 0) {
rate_table = kmalloc(sizeof(int) * fp->nr_rates, GFP_KERNEL);
if (!rate_table) {
kfree(fp);
return -ENOMEM;
}
memcpy(rate_table, fp->rate_table, sizeof(int) * fp->nr_rates);
fp->rate_table = rate_table;
}
stream = (fp->endpoint & USB_DIR_IN)
? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
err = add_audio_endpoint(chip, stream, fp);
if (err < 0) {
kfree(fp);
kfree(rate_table);
return err;
}
if (fp->iface != get_iface_desc(&iface->altsetting[0])->bInterfaceNumber ||
fp->altset_idx >= iface->num_altsetting) {
kfree(fp);
kfree(rate_table);
return -EINVAL;
}
alts = &iface->altsetting[fp->altset_idx];
usb_set_interface(chip->dev, fp->iface, 0);
init_usb_pitch(chip->dev, fp->iface, alts, fp);
init_usb_sample_rate(chip->dev, fp->iface, alts, fp, fp->rate_max);
return 0;
}
/*
* create a stream for an interface with proper descriptors
*/
static int create_standard_interface_quirk(snd_usb_audio_t *chip,
struct usb_interface *iface,
const snd_usb_audio_quirk_t *quirk)
{
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
int err;
alts = &iface->altsetting[0];
altsd = get_iface_desc(alts);
switch (quirk->type) {
case QUIRK_AUDIO_STANDARD_INTERFACE:
err = parse_audio_endpoints(chip, altsd->bInterfaceNumber);
if (!err)
usb_set_interface(chip->dev, altsd->bInterfaceNumber, 0); /* reset the current interface */
break;
case QUIRK_MIDI_STANDARD_INTERFACE:
err = snd_usb_create_midi_interface(chip, iface, NULL);
break;
default:
snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
return -ENXIO;
}
if (err < 0) {
snd_printk(KERN_ERR "cannot setup if %d: error %d\n",
altsd->bInterfaceNumber, err);
return err;
}
return 0;
}
/*
* Create a stream for an Edirol UA-700/UA-25 interface. The only way
* to detect the sample rate is by looking at wMaxPacketSize.
*/
static int create_ua700_ua25_quirk(snd_usb_audio_t *chip,
struct usb_interface *iface)
{
static const struct audioformat ua_format = {
.format = SNDRV_PCM_FORMAT_S24_3LE,
.channels = 2,
.fmt_type = USB_FORMAT_TYPE_I,
.altsetting = 1,
.altset_idx = 1,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
};
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
struct audioformat *fp;
int stream, err;
/* both PCM and MIDI interfaces have 2 altsettings */
if (iface->num_altsetting != 2)
return -ENXIO;
alts = &iface->altsetting[1];
altsd = get_iface_desc(alts);
if (altsd->bNumEndpoints == 2) {
static const snd_usb_midi_endpoint_info_t ua700_ep = {
.out_cables = 0x0003,
.in_cables = 0x0003
};
static const snd_usb_audio_quirk_t ua700_quirk = {
.type = QUIRK_MIDI_FIXED_ENDPOINT,
.data = &ua700_ep
};
static const snd_usb_midi_endpoint_info_t ua25_ep = {
.out_cables = 0x0001,
.in_cables = 0x0001
};
static const snd_usb_audio_quirk_t ua25_quirk = {
.type = QUIRK_MIDI_FIXED_ENDPOINT,
.data = &ua25_ep
};
if (chip->usb_id == USB_ID(0x0582, 0x002b))
return snd_usb_create_midi_interface(chip, iface,
&ua700_quirk);
else
return snd_usb_create_midi_interface(chip, iface,
&ua25_quirk);
}
if (altsd->bNumEndpoints != 1)
return -ENXIO;
fp = kmalloc(sizeof(*fp), GFP_KERNEL);
if (!fp)
return -ENOMEM;
memcpy(fp, &ua_format, sizeof(*fp));
fp->iface = altsd->bInterfaceNumber;
fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress;
fp->ep_attr = get_endpoint(alts, 0)->bmAttributes;
fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize);
switch (fp->maxpacksize) {
case 0x120:
fp->rate_max = fp->rate_min = 44100;
break;
case 0x138:
case 0x140:
fp->rate_max = fp->rate_min = 48000;
break;
case 0x258:
case 0x260:
fp->rate_max = fp->rate_min = 96000;
break;
default:
snd_printk(KERN_ERR "unknown sample rate\n");
kfree(fp);
return -ENXIO;
}
stream = (fp->endpoint & USB_DIR_IN)
? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
err = add_audio_endpoint(chip, stream, fp);
if (err < 0) {
kfree(fp);
return err;
}
usb_set_interface(chip->dev, fp->iface, 0);
return 0;
}
/*
* Create a stream for an Edirol UA-1000 interface.
*/
static int create_ua1000_quirk(snd_usb_audio_t *chip, struct usb_interface *iface)
{
static const struct audioformat ua1000_format = {
.format = SNDRV_PCM_FORMAT_S32_LE,
.fmt_type = USB_FORMAT_TYPE_I,
.altsetting = 1,
.altset_idx = 1,
.attributes = 0,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
};
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
struct audioformat *fp;
int stream, err;
if (iface->num_altsetting != 2)
return -ENXIO;
alts = &iface->altsetting[1];
altsd = get_iface_desc(alts);
if (alts->extralen != 11 || alts->extra[1] != CS_AUDIO_INTERFACE ||
altsd->bNumEndpoints != 1)
return -ENXIO;
fp = kmalloc(sizeof(*fp), GFP_KERNEL);
if (!fp)
return -ENOMEM;
memcpy(fp, &ua1000_format, sizeof(*fp));
fp->channels = alts->extra[4];
fp->iface = altsd->bInterfaceNumber;
fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress;
fp->ep_attr = get_endpoint(alts, 0)->bmAttributes;
fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize);
fp->rate_max = fp->rate_min = combine_triple(&alts->extra[8]);
stream = (fp->endpoint & USB_DIR_IN)
? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
err = add_audio_endpoint(chip, stream, fp);
if (err < 0) {
kfree(fp);
return err;
}
/* FIXME: playback must be synchronized to capture */
usb_set_interface(chip->dev, fp->iface, 0);
return 0;
}
static int snd_usb_create_quirk(snd_usb_audio_t *chip,
struct usb_interface *iface,
const snd_usb_audio_quirk_t *quirk);
/*
* handle the quirks for the contained interfaces
*/
static int create_composite_quirk(snd_usb_audio_t *chip,
struct usb_interface *iface,
const snd_usb_audio_quirk_t *quirk)
{
int probed_ifnum = get_iface_desc(iface->altsetting)->bInterfaceNumber;
int err;
for (quirk = quirk->data; quirk->ifnum >= 0; ++quirk) {
iface = usb_ifnum_to_if(chip->dev, quirk->ifnum);
if (!iface)
continue;
if (quirk->ifnum != probed_ifnum &&
usb_interface_claimed(iface))
continue;
err = snd_usb_create_quirk(chip, iface, quirk);
if (err < 0)
return err;
if (quirk->ifnum != probed_ifnum)
usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1L);
}
return 0;
}
/*
* boot quirks
*/
#define EXTIGY_FIRMWARE_SIZE_OLD 794
#define EXTIGY_FIRMWARE_SIZE_NEW 483
static int snd_usb_extigy_boot_quirk(struct usb_device *dev, struct usb_interface *intf)
{
struct usb_host_config *config = dev->actconfig;
int err;
if (le16_to_cpu(get_cfg_desc(config)->wTotalLength) == EXTIGY_FIRMWARE_SIZE_OLD ||
le16_to_cpu(get_cfg_desc(config)->wTotalLength) == EXTIGY_FIRMWARE_SIZE_NEW) {
snd_printdd("sending Extigy boot sequence...\n");
/* Send message to force it to reconnect with full interface. */
err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev,0),
0x10, 0x43, 0x0001, 0x000a, NULL, 0, 1000);
if (err < 0) snd_printdd("error sending boot message: %d\n", err);
err = usb_get_descriptor(dev, USB_DT_DEVICE, 0,
&dev->descriptor, sizeof(dev->descriptor));
config = dev->actconfig;
if (err < 0) snd_printdd("error usb_get_descriptor: %d\n", err);
err = usb_reset_configuration(dev);
if (err < 0) snd_printdd("error usb_reset_configuration: %d\n", err);
snd_printdd("extigy_boot: new boot length = %d\n",
le16_to_cpu(get_cfg_desc(config)->wTotalLength));
return -ENODEV; /* quit this anyway */
}
return 0;
}
/*
* audio-interface quirks
*
* returns zero if no standard audio/MIDI parsing is needed.
* returns a postive value if standard audio/midi interfaces are parsed
* after this.
* returns a negative value at error.
*/
static int snd_usb_create_quirk(snd_usb_audio_t *chip,
struct usb_interface *iface,
const snd_usb_audio_quirk_t *quirk)
{
switch (quirk->type) {
case QUIRK_MIDI_FIXED_ENDPOINT:
case QUIRK_MIDI_YAMAHA:
case QUIRK_MIDI_MIDIMAN:
case QUIRK_MIDI_NOVATION:
case QUIRK_MIDI_MOTU:
case QUIRK_MIDI_EMAGIC:
return snd_usb_create_midi_interface(chip, iface, quirk);
case QUIRK_COMPOSITE:
return create_composite_quirk(chip, iface, quirk);
case QUIRK_AUDIO_FIXED_ENDPOINT:
return create_fixed_stream_quirk(chip, iface, quirk);
case QUIRK_AUDIO_STANDARD_INTERFACE:
case QUIRK_MIDI_STANDARD_INTERFACE:
return create_standard_interface_quirk(chip, iface, quirk);
case QUIRK_AUDIO_EDIROL_UA700_UA25:
return create_ua700_ua25_quirk(chip, iface);
case QUIRK_AUDIO_EDIROL_UA1000:
return create_ua1000_quirk(chip, iface);
case QUIRK_IGNORE_INTERFACE:
return 0;
default:
snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
return -ENXIO;
}
}
/*
* common proc files to show the usb device info
*/
static void proc_audio_usbbus_read(snd_info_entry_t *entry, snd_info_buffer_t *buffer)
{
snd_usb_audio_t *chip = entry->private_data;
if (! chip->shutdown)
snd_iprintf(buffer, "%03d/%03d\n", chip->dev->bus->busnum, chip->dev->devnum);
}
static void proc_audio_usbid_read(snd_info_entry_t *entry, snd_info_buffer_t *buffer)
{
snd_usb_audio_t *chip = entry->private_data;
if (! chip->shutdown)
snd_iprintf(buffer, "%04x:%04x\n",
USB_ID_VENDOR(chip->usb_id),
USB_ID_PRODUCT(chip->usb_id));
}
static void snd_usb_audio_create_proc(snd_usb_audio_t *chip)
{
snd_info_entry_t *entry;
if (! snd_card_proc_new(chip->card, "usbbus", &entry))
snd_info_set_text_ops(entry, chip, 1024, proc_audio_usbbus_read);
if (! snd_card_proc_new(chip->card, "usbid", &entry))
snd_info_set_text_ops(entry, chip, 1024, proc_audio_usbid_read);
}
/*
* free the chip instance
*
* here we have to do not much, since pcm and controls are already freed
*
*/
static int snd_usb_audio_free(snd_usb_audio_t *chip)
{
kfree(chip);
return 0;
}
static int snd_usb_audio_dev_free(snd_device_t *device)
{
snd_usb_audio_t *chip = device->device_data;
return snd_usb_audio_free(chip);
}
/*
* create a chip instance and set its names.
*/
static int snd_usb_audio_create(struct usb_device *dev, int idx,
const snd_usb_audio_quirk_t *quirk,
snd_usb_audio_t **rchip)
{
snd_card_t *card;
snd_usb_audio_t *chip;
int err, len;
char component[14];
static snd_device_ops_t ops = {
.dev_free = snd_usb_audio_dev_free,
};
*rchip = NULL;
if (snd_usb_get_speed(dev) != USB_SPEED_FULL &&
snd_usb_get_speed(dev) != USB_SPEED_HIGH) {
snd_printk(KERN_ERR "unknown device speed %d\n", snd_usb_get_speed(dev));
return -ENXIO;
}
card = snd_card_new(index[idx], id[idx], THIS_MODULE, 0);
if (card == NULL) {
snd_printk(KERN_ERR "cannot create card instance %d\n", idx);
return -ENOMEM;
}
chip = kcalloc(1, sizeof(*chip), GFP_KERNEL);
if (! chip) {
snd_card_free(card);
return -ENOMEM;
}
chip->index = idx;
chip->dev = dev;
chip->card = card;
chip->usb_id = USB_ID(le16_to_cpu(dev->descriptor.idVendor),
le16_to_cpu(dev->descriptor.idProduct));
INIT_LIST_HEAD(&chip->pcm_list);
INIT_LIST_HEAD(&chip->midi_list);
INIT_LIST_HEAD(&chip->mixer_list);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
snd_usb_audio_free(chip);
snd_card_free(card);
return err;
}
strcpy(card->driver, "USB-Audio");
sprintf(component, "USB%04x:%04x",
USB_ID_VENDOR(chip->usb_id), USB_ID_PRODUCT(chip->usb_id));
snd_component_add(card, component);
/* retrieve the device string as shortname */
if (quirk && quirk->product_name) {
strlcpy(card->shortname, quirk->product_name, sizeof(card->shortname));
} else {
if (!dev->descriptor.iProduct ||
usb_string(dev, dev->descriptor.iProduct,
card->shortname, sizeof(card->shortname)) <= 0) {
/* no name available from anywhere, so use ID */
sprintf(card->shortname, "USB Device %#04x:%#04x",
USB_ID_VENDOR(chip->usb_id),
USB_ID_PRODUCT(chip->usb_id));
}
}
/* retrieve the vendor and device strings as longname */
if (quirk && quirk->vendor_name) {
len = strlcpy(card->longname, quirk->vendor_name, sizeof(card->longname));
} else {
if (dev->descriptor.iManufacturer)
len = usb_string(dev, dev->descriptor.iManufacturer,
card->longname, sizeof(card->longname));
else
len = 0;
/* we don't really care if there isn't any vendor string */
}
if (len > 0)
strlcat(card->longname, " ", sizeof(card->longname));
strlcat(card->longname, card->shortname, sizeof(card->longname));
len = strlcat(card->longname, " at ", sizeof(card->longname));
if (len < sizeof(card->longname))
usb_make_path(dev, card->longname + len, sizeof(card->longname) - len);
strlcat(card->longname,
snd_usb_get_speed(dev) == USB_SPEED_FULL ? ", full speed" : ", high speed",
sizeof(card->longname));
snd_usb_audio_create_proc(chip);
snd_card_set_dev(card, &dev->dev);
*rchip = chip;
return 0;
}
/*
* probe the active usb device
*
* note that this can be called multiple times per a device, when it
* includes multiple audio control interfaces.
*
* thus we check the usb device pointer and creates the card instance
* only at the first time. the successive calls of this function will
* append the pcm interface to the corresponding card.
*/
static void *snd_usb_audio_probe(struct usb_device *dev,
struct usb_interface *intf,
const struct usb_device_id *usb_id)
{
struct usb_host_config *config = dev->actconfig;
const snd_usb_audio_quirk_t *quirk = (const snd_usb_audio_quirk_t *)usb_id->driver_info;
int i, err;
snd_usb_audio_t *chip;
struct usb_host_interface *alts;
int ifnum;
u32 id;
alts = &intf->altsetting[0];
ifnum = get_iface_desc(alts)->bInterfaceNumber;
id = USB_ID(le16_to_cpu(dev->descriptor.idVendor),
le16_to_cpu(dev->descriptor.idProduct));
if (quirk && quirk->ifnum >= 0 && ifnum != quirk->ifnum)
goto __err_val;
/* SB Extigy needs special boot-up sequence */
/* if more models come, this will go to the quirk list. */
if (id == USB_ID(0x041e, 0x3000)) {
if (snd_usb_extigy_boot_quirk(dev, intf) < 0)
goto __err_val;
config = dev->actconfig;
}
/*
* found a config. now register to ALSA
*/
/* check whether it's already registered */
chip = NULL;
down(&register_mutex);
for (i = 0; i < SNDRV_CARDS; i++) {
if (usb_chip[i] && usb_chip[i]->dev == dev) {
if (usb_chip[i]->shutdown) {
snd_printk(KERN_ERR "USB device is in the shutdown state, cannot create a card instance\n");
goto __error;
}
chip = usb_chip[i];
break;
}
}
if (! chip) {
/* it's a fresh one.
* now look for an empty slot and create a new card instance
*/
/* first, set the current configuration for this device */
if (usb_reset_configuration(dev) < 0) {
snd_printk(KERN_ERR "cannot reset configuration (value 0x%x)\n", get_cfg_desc(config)->bConfigurationValue);
goto __error;
}
for (i = 0; i < SNDRV_CARDS; i++)
if (enable[i] && ! usb_chip[i] &&
(vid[i] == -1 || vid[i] == USB_ID_VENDOR(id)) &&
(pid[i] == -1 || pid[i] == USB_ID_PRODUCT(id))) {
if (snd_usb_audio_create(dev, i, quirk, &chip) < 0) {
goto __error;
}
break;
}
if (! chip) {
snd_printk(KERN_ERR "no available usb audio device\n");
goto __error;
}
}
err = 1; /* continue */
if (quirk && quirk->ifnum != QUIRK_NO_INTERFACE) {
/* need some special handlings */
if ((err = snd_usb_create_quirk(chip, intf, quirk)) < 0)
goto __error;
}
if (err > 0) {
/* create normal USB audio interfaces */
if (snd_usb_create_streams(chip, ifnum) < 0 ||
snd_usb_create_mixer(chip, ifnum) < 0) {
goto __error;
}
}
/* we are allowed to call snd_card_register() many times */
if (snd_card_register(chip->card) < 0) {
goto __error;
}
usb_chip[chip->index] = chip;
chip->num_interfaces++;
up(&register_mutex);
return chip;
__error:
if (chip && !chip->num_interfaces)
snd_card_free(chip->card);
up(&register_mutex);
__err_val:
return NULL;
}
/*
* we need to take care of counter, since disconnection can be called also
* many times as well as usb_audio_probe().
*/
static void snd_usb_audio_disconnect(struct usb_device *dev, void *ptr)
{
snd_usb_audio_t *chip;
snd_card_t *card;
struct list_head *p;
if (ptr == (void *)-1L)
return;
chip = ptr;
card = chip->card;
down(&register_mutex);
chip->shutdown = 1;
chip->num_interfaces--;
if (chip->num_interfaces <= 0) {
snd_card_disconnect(card);
/* release the pcm resources */
list_for_each(p, &chip->pcm_list) {
snd_usb_stream_disconnect(p);
}
/* release the midi resources */
list_for_each(p, &chip->midi_list) {
snd_usbmidi_disconnect(p);
}
/* release mixer resources */
list_for_each(p, &chip->mixer_list) {
snd_usb_mixer_disconnect(p);
}
usb_chip[chip->index] = NULL;
up(&register_mutex);
snd_card_free(card);
} else {
up(&register_mutex);
}
}
/*
* new 2.5 USB kernel API
*/
static int usb_audio_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
void *chip;
chip = snd_usb_audio_probe(interface_to_usbdev(intf), intf, id);
if (chip) {
dev_set_drvdata(&intf->dev, chip);
return 0;
} else
return -EIO;
}
static void usb_audio_disconnect(struct usb_interface *intf)
{
snd_usb_audio_disconnect(interface_to_usbdev(intf),
dev_get_drvdata(&intf->dev));
}
static int __init snd_usb_audio_init(void)
{
if (nrpacks < MIN_PACKS_URB || nrpacks > MAX_PACKS) {
printk(KERN_WARNING "invalid nrpacks value.\n");
return -EINVAL;
}
usb_register(&usb_audio_driver);
return 0;
}
static void __exit snd_usb_audio_cleanup(void)
{
usb_deregister(&usb_audio_driver);
}
module_init(snd_usb_audio_init);
module_exit(snd_usb_audio_cleanup);