android_kernel_xiaomi_sm7250/drivers/power/supply/bq27xxx_battery.c
Matthias Schiffer b10f94efbd power: supply: bq27xxx: fix power_avg for newer ICs
[ Upstream commit c4d57c22ac65bd503716062a06fad55a01569cac ]

On all newer bq27xxx ICs, the AveragePower register contains a signed
value; in addition to handling the raw value as unsigned, the driver
code also didn't convert it to µW as expected.

At least for the BQ28Z610, the reference manual incorrectly states that
the value is in units of 1mW and not 10mW. I have no way of knowing
whether the manuals of other supported ICs contain the same error, or if
there are models that actually use 1mW. At least, the new code shouldn't
be *less* correct than the old version for any device.

power_avg is removed from the cache structure, se we don't have to
extend it to store both a signed value and an error code. Always getting
an up-to-date value may be desirable anyways, as it avoids inconsistent
current and power readings when switching between charging and
discharging.

Signed-off-by: Matthias Schiffer <matthias.schiffer@ew.tq-group.com>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-22 10:59:16 +02:00

1938 lines
53 KiB
C

/*
* BQ27xxx battery driver
*
* Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
* Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
* Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
* Copyright (C) 2011 Pali Rohár <pali.rohar@gmail.com>
* Copyright (C) 2017 Liam Breck <kernel@networkimprov.net>
*
* Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Datasheets:
* http://www.ti.com/product/bq27000
* http://www.ti.com/product/bq27200
* http://www.ti.com/product/bq27010
* http://www.ti.com/product/bq27210
* http://www.ti.com/product/bq27500
* http://www.ti.com/product/bq27510-g1
* http://www.ti.com/product/bq27510-g2
* http://www.ti.com/product/bq27510-g3
* http://www.ti.com/product/bq27520-g1
* http://www.ti.com/product/bq27520-g2
* http://www.ti.com/product/bq27520-g3
* http://www.ti.com/product/bq27520-g4
* http://www.ti.com/product/bq27530-g1
* http://www.ti.com/product/bq27531-g1
* http://www.ti.com/product/bq27541-g1
* http://www.ti.com/product/bq27542-g1
* http://www.ti.com/product/bq27546-g1
* http://www.ti.com/product/bq27742-g1
* http://www.ti.com/product/bq27545-g1
* http://www.ti.com/product/bq27421-g1
* http://www.ti.com/product/bq27425-g1
* http://www.ti.com/product/bq27426
* http://www.ti.com/product/bq27411-g1
* http://www.ti.com/product/bq27441-g1
* http://www.ti.com/product/bq27621-g1
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/param.h>
#include <linux/jiffies.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/power/bq27xxx_battery.h>
#define BQ27XXX_MANUFACTURER "Texas Instruments"
/* BQ27XXX Flags */
#define BQ27XXX_FLAG_DSC BIT(0)
#define BQ27XXX_FLAG_SOCF BIT(1) /* State-of-Charge threshold final */
#define BQ27XXX_FLAG_SOC1 BIT(2) /* State-of-Charge threshold 1 */
#define BQ27XXX_FLAG_CFGUP BIT(4)
#define BQ27XXX_FLAG_FC BIT(9)
#define BQ27XXX_FLAG_OTD BIT(14)
#define BQ27XXX_FLAG_OTC BIT(15)
#define BQ27XXX_FLAG_UT BIT(14)
#define BQ27XXX_FLAG_OT BIT(15)
/* BQ27000 has different layout for Flags register */
#define BQ27000_FLAG_EDVF BIT(0) /* Final End-of-Discharge-Voltage flag */
#define BQ27000_FLAG_EDV1 BIT(1) /* First End-of-Discharge-Voltage flag */
#define BQ27000_FLAG_CI BIT(4) /* Capacity Inaccurate flag */
#define BQ27000_FLAG_FC BIT(5)
#define BQ27000_FLAG_CHGS BIT(7) /* Charge state flag */
/* control register params */
#define BQ27XXX_SEALED 0x20
#define BQ27XXX_SET_CFGUPDATE 0x13
#define BQ27XXX_SOFT_RESET 0x42
#define BQ27XXX_RESET 0x41
#define BQ27XXX_RS (20) /* Resistor sense mOhm */
#define BQ27XXX_POWER_CONSTANT (29200) /* 29.2 µV^2 * 1000 */
#define BQ27XXX_CURRENT_CONSTANT (3570) /* 3.57 µV * 1000 */
#define INVALID_REG_ADDR 0xff
/*
* bq27xxx_reg_index - Register names
*
* These are indexes into a device's register mapping array.
*/
enum bq27xxx_reg_index {
BQ27XXX_REG_CTRL = 0, /* Control */
BQ27XXX_REG_TEMP, /* Temperature */
BQ27XXX_REG_INT_TEMP, /* Internal Temperature */
BQ27XXX_REG_VOLT, /* Voltage */
BQ27XXX_REG_AI, /* Average Current */
BQ27XXX_REG_FLAGS, /* Flags */
BQ27XXX_REG_TTE, /* Time-to-Empty */
BQ27XXX_REG_TTF, /* Time-to-Full */
BQ27XXX_REG_TTES, /* Time-to-Empty Standby */
BQ27XXX_REG_TTECP, /* Time-to-Empty at Constant Power */
BQ27XXX_REG_NAC, /* Nominal Available Capacity */
BQ27XXX_REG_FCC, /* Full Charge Capacity */
BQ27XXX_REG_CYCT, /* Cycle Count */
BQ27XXX_REG_AE, /* Available Energy */
BQ27XXX_REG_SOC, /* State-of-Charge */
BQ27XXX_REG_DCAP, /* Design Capacity */
BQ27XXX_REG_AP, /* Average Power */
BQ27XXX_DM_CTRL, /* Block Data Control */
BQ27XXX_DM_CLASS, /* Data Class */
BQ27XXX_DM_BLOCK, /* Data Block */
BQ27XXX_DM_DATA, /* Block Data */
BQ27XXX_DM_CKSUM, /* Block Data Checksum */
BQ27XXX_REG_MAX, /* sentinel */
};
#define BQ27XXX_DM_REG_ROWS \
[BQ27XXX_DM_CTRL] = 0x61, \
[BQ27XXX_DM_CLASS] = 0x3e, \
[BQ27XXX_DM_BLOCK] = 0x3f, \
[BQ27XXX_DM_DATA] = 0x40, \
[BQ27XXX_DM_CKSUM] = 0x60
/* Register mappings */
static u8
bq27000_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = 0x18,
[BQ27XXX_REG_TTES] = 0x1c,
[BQ27XXX_REG_TTECP] = 0x26,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x2a,
[BQ27XXX_REG_AE] = 0x22,
[BQ27XXX_REG_SOC] = 0x0b,
[BQ27XXX_REG_DCAP] = 0x76,
[BQ27XXX_REG_AP] = 0x24,
[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
},
bq27010_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = 0x18,
[BQ27XXX_REG_TTES] = 0x1c,
[BQ27XXX_REG_TTECP] = 0x26,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x2a,
[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
[BQ27XXX_REG_SOC] = 0x0b,
[BQ27XXX_REG_DCAP] = 0x76,
[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
},
bq2750x_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = 0x28,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTES] = 0x1a,
[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x2a,
[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
[BQ27XXX_REG_SOC] = 0x2c,
[BQ27XXX_REG_DCAP] = 0x3c,
[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
BQ27XXX_DM_REG_ROWS,
},
#define bq2751x_regs bq27510g3_regs
#define bq2752x_regs bq27510g3_regs
bq27500_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = 0x18,
[BQ27XXX_REG_TTES] = 0x1c,
[BQ27XXX_REG_TTECP] = 0x26,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x2a,
[BQ27XXX_REG_AE] = 0x22,
[BQ27XXX_REG_SOC] = 0x2c,
[BQ27XXX_REG_DCAP] = 0x3c,
[BQ27XXX_REG_AP] = 0x24,
BQ27XXX_DM_REG_ROWS,
},
#define bq27510g1_regs bq27500_regs
#define bq27510g2_regs bq27500_regs
bq27510g3_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = 0x28,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTES] = 0x1a,
[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x1e,
[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
[BQ27XXX_REG_SOC] = 0x20,
[BQ27XXX_REG_DCAP] = 0x2e,
[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
BQ27XXX_DM_REG_ROWS,
},
bq27520g1_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = 0x18,
[BQ27XXX_REG_TTES] = 0x1c,
[BQ27XXX_REG_TTECP] = 0x26,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
[BQ27XXX_REG_AE] = 0x22,
[BQ27XXX_REG_SOC] = 0x2c,
[BQ27XXX_REG_DCAP] = 0x3c,
[BQ27XXX_REG_AP] = 0x24,
BQ27XXX_DM_REG_ROWS,
},
bq27520g2_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = 0x36,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = 0x18,
[BQ27XXX_REG_TTES] = 0x1c,
[BQ27XXX_REG_TTECP] = 0x26,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x2a,
[BQ27XXX_REG_AE] = 0x22,
[BQ27XXX_REG_SOC] = 0x2c,
[BQ27XXX_REG_DCAP] = 0x3c,
[BQ27XXX_REG_AP] = 0x24,
BQ27XXX_DM_REG_ROWS,
},
bq27520g3_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = 0x36,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTES] = 0x1c,
[BQ27XXX_REG_TTECP] = 0x26,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x2a,
[BQ27XXX_REG_AE] = 0x22,
[BQ27XXX_REG_SOC] = 0x2c,
[BQ27XXX_REG_DCAP] = 0x3c,
[BQ27XXX_REG_AP] = 0x24,
BQ27XXX_DM_REG_ROWS,
},
bq27520g4_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = 0x28,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTES] = 0x1c,
[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x1e,
[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
[BQ27XXX_REG_SOC] = 0x20,
[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
BQ27XXX_DM_REG_ROWS,
},
bq27521_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x02,
[BQ27XXX_REG_TEMP] = 0x0a,
[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
[BQ27XXX_REG_VOLT] = 0x0c,
[BQ27XXX_REG_AI] = 0x0e,
[BQ27XXX_REG_FLAGS] = 0x08,
[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
[BQ27XXX_REG_FCC] = INVALID_REG_ADDR,
[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
[BQ27XXX_REG_SOC] = INVALID_REG_ADDR,
[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
},
bq27530_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = 0x32,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x2a,
[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
[BQ27XXX_REG_SOC] = 0x2c,
[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
[BQ27XXX_REG_AP] = 0x24,
BQ27XXX_DM_REG_ROWS,
},
#define bq27531_regs bq27530_regs
bq27541_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = 0x28,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x2a,
[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
[BQ27XXX_REG_SOC] = 0x2c,
[BQ27XXX_REG_DCAP] = 0x3c,
[BQ27XXX_REG_AP] = 0x24,
BQ27XXX_DM_REG_ROWS,
},
#define bq27542_regs bq27541_regs
#define bq27546_regs bq27541_regs
#define bq27742_regs bq27541_regs
bq27545_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x06,
[BQ27XXX_REG_INT_TEMP] = 0x28,
[BQ27XXX_REG_VOLT] = 0x08,
[BQ27XXX_REG_AI] = 0x14,
[BQ27XXX_REG_FLAGS] = 0x0a,
[BQ27XXX_REG_TTE] = 0x16,
[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
[BQ27XXX_REG_NAC] = 0x0c,
[BQ27XXX_REG_FCC] = 0x12,
[BQ27XXX_REG_CYCT] = 0x2a,
[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
[BQ27XXX_REG_SOC] = 0x2c,
[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
[BQ27XXX_REG_AP] = 0x24,
BQ27XXX_DM_REG_ROWS,
},
bq27421_regs[BQ27XXX_REG_MAX] = {
[BQ27XXX_REG_CTRL] = 0x00,
[BQ27XXX_REG_TEMP] = 0x02,
[BQ27XXX_REG_INT_TEMP] = 0x1e,
[BQ27XXX_REG_VOLT] = 0x04,
[BQ27XXX_REG_AI] = 0x10,
[BQ27XXX_REG_FLAGS] = 0x06,
[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
[BQ27XXX_REG_NAC] = 0x08,
[BQ27XXX_REG_FCC] = 0x0e,
[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
[BQ27XXX_REG_SOC] = 0x1c,
[BQ27XXX_REG_DCAP] = 0x3c,
[BQ27XXX_REG_AP] = 0x18,
BQ27XXX_DM_REG_ROWS,
};
#define bq27425_regs bq27421_regs
#define bq27426_regs bq27421_regs
#define bq27441_regs bq27421_regs
#define bq27621_regs bq27421_regs
static enum power_supply_property bq27000_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_MANUFACTURER,
};
static enum power_supply_property bq27010_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_MANUFACTURER,
};
#define bq2750x_props bq27510g3_props
#define bq2751x_props bq27510g3_props
#define bq2752x_props bq27510g3_props
static enum power_supply_property bq27500_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_MANUFACTURER,
};
#define bq27510g1_props bq27500_props
#define bq27510g2_props bq27500_props
static enum power_supply_property bq27510g3_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_MANUFACTURER,
};
static enum power_supply_property bq27520g1_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_MANUFACTURER,
};
#define bq27520g2_props bq27500_props
static enum power_supply_property bq27520g3_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_MANUFACTURER,
};
static enum power_supply_property bq27520g4_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_MANUFACTURER,
};
static enum power_supply_property bq27521_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TECHNOLOGY,
};
static enum power_supply_property bq27530_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_MANUFACTURER,
};
#define bq27531_props bq27530_props
static enum power_supply_property bq27541_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_MANUFACTURER,
};
#define bq27542_props bq27541_props
#define bq27546_props bq27541_props
#define bq27742_props bq27541_props
static enum power_supply_property bq27545_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_MANUFACTURER,
};
static enum power_supply_property bq27421_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_MANUFACTURER,
};
#define bq27425_props bq27421_props
#define bq27426_props bq27421_props
#define bq27441_props bq27421_props
#define bq27621_props bq27421_props
struct bq27xxx_dm_reg {
u8 subclass_id;
u8 offset;
u8 bytes;
u16 min, max;
};
enum bq27xxx_dm_reg_id {
BQ27XXX_DM_DESIGN_CAPACITY = 0,
BQ27XXX_DM_DESIGN_ENERGY,
BQ27XXX_DM_TERMINATE_VOLTAGE,
};
#define bq27000_dm_regs 0
#define bq27010_dm_regs 0
#define bq2750x_dm_regs 0
#define bq2751x_dm_regs 0
#define bq2752x_dm_regs 0
#if 0 /* not yet tested */
static struct bq27xxx_dm_reg bq27500_dm_regs[] = {
[BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 10, 2, 0, 65535 },
[BQ27XXX_DM_DESIGN_ENERGY] = { }, /* missing on chip */
[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 },
};
#else
#define bq27500_dm_regs 0
#endif
/* todo create data memory definitions from datasheets and test on chips */
#define bq27510g1_dm_regs 0
#define bq27510g2_dm_regs 0
#define bq27510g3_dm_regs 0
#define bq27520g1_dm_regs 0
#define bq27520g2_dm_regs 0
#define bq27520g3_dm_regs 0
#define bq27520g4_dm_regs 0
#define bq27521_dm_regs 0
#define bq27530_dm_regs 0
#define bq27531_dm_regs 0
#define bq27541_dm_regs 0
#define bq27542_dm_regs 0
#define bq27546_dm_regs 0
#define bq27742_dm_regs 0
#if 0 /* not yet tested */
static struct bq27xxx_dm_reg bq27545_dm_regs[] = {
[BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 23, 2, 0, 32767 },
[BQ27XXX_DM_DESIGN_ENERGY] = { 48, 25, 2, 0, 32767 },
[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800, 3700 },
};
#else
#define bq27545_dm_regs 0
#endif
static struct bq27xxx_dm_reg bq27421_dm_regs[] = {
[BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 8000 },
[BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 },
[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500, 3700 },
};
static struct bq27xxx_dm_reg bq27425_dm_regs[] = {
[BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 12, 2, 0, 32767 },
[BQ27XXX_DM_DESIGN_ENERGY] = { 82, 14, 2, 0, 32767 },
[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800, 3700 },
};
static struct bq27xxx_dm_reg bq27426_dm_regs[] = {
[BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 6, 2, 0, 8000 },
[BQ27XXX_DM_DESIGN_ENERGY] = { 82, 8, 2, 0, 32767 },
[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500, 3700 },
};
#if 0 /* not yet tested */
#define bq27441_dm_regs bq27421_dm_regs
#else
#define bq27441_dm_regs 0
#endif
#if 0 /* not yet tested */
static struct bq27xxx_dm_reg bq27621_dm_regs[] = {
[BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 3, 2, 0, 8000 },
[BQ27XXX_DM_DESIGN_ENERGY] = { 82, 5, 2, 0, 32767 },
[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500, 3700 },
};
#else
#define bq27621_dm_regs 0
#endif
#define BQ27XXX_O_ZERO 0x00000001
#define BQ27XXX_O_OTDC 0x00000002 /* has OTC/OTD overtemperature flags */
#define BQ27XXX_O_UTOT 0x00000004 /* has OT overtemperature flag */
#define BQ27XXX_O_CFGUP 0x00000008
#define BQ27XXX_O_RAM 0x00000010
#define BQ27XXX_DATA(ref, key, opt) { \
.opts = (opt), \
.unseal_key = key, \
.regs = ref##_regs, \
.dm_regs = ref##_dm_regs, \
.props = ref##_props, \
.props_size = ARRAY_SIZE(ref##_props) }
static struct {
u32 opts;
u32 unseal_key;
u8 *regs;
struct bq27xxx_dm_reg *dm_regs;
enum power_supply_property *props;
size_t props_size;
} bq27xxx_chip_data[] = {
[BQ27000] = BQ27XXX_DATA(bq27000, 0 , BQ27XXX_O_ZERO),
[BQ27010] = BQ27XXX_DATA(bq27010, 0 , BQ27XXX_O_ZERO),
[BQ2750X] = BQ27XXX_DATA(bq2750x, 0 , BQ27XXX_O_OTDC),
[BQ2751X] = BQ27XXX_DATA(bq2751x, 0 , BQ27XXX_O_OTDC),
[BQ2752X] = BQ27XXX_DATA(bq2752x, 0 , BQ27XXX_O_OTDC),
[BQ27500] = BQ27XXX_DATA(bq27500, 0x04143672, BQ27XXX_O_OTDC),
[BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0 , BQ27XXX_O_OTDC),
[BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0 , BQ27XXX_O_OTDC),
[BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0 , BQ27XXX_O_OTDC),
[BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0 , BQ27XXX_O_OTDC),
[BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0 , BQ27XXX_O_OTDC),
[BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0 , BQ27XXX_O_OTDC),
[BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0 , BQ27XXX_O_OTDC),
[BQ27521] = BQ27XXX_DATA(bq27521, 0 , 0),
[BQ27530] = BQ27XXX_DATA(bq27530, 0 , BQ27XXX_O_UTOT),
[BQ27531] = BQ27XXX_DATA(bq27531, 0 , BQ27XXX_O_UTOT),
[BQ27541] = BQ27XXX_DATA(bq27541, 0 , BQ27XXX_O_OTDC),
[BQ27542] = BQ27XXX_DATA(bq27542, 0 , BQ27XXX_O_OTDC),
[BQ27546] = BQ27XXX_DATA(bq27546, 0 , BQ27XXX_O_OTDC),
[BQ27742] = BQ27XXX_DATA(bq27742, 0 , BQ27XXX_O_OTDC),
[BQ27545] = BQ27XXX_DATA(bq27545, 0x04143672, BQ27XXX_O_OTDC),
[BQ27421] = BQ27XXX_DATA(bq27421, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
[BQ27425] = BQ27XXX_DATA(bq27425, 0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP),
[BQ27426] = BQ27XXX_DATA(bq27426, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
[BQ27441] = BQ27XXX_DATA(bq27441, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
[BQ27621] = BQ27XXX_DATA(bq27621, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
};
static DEFINE_MUTEX(bq27xxx_list_lock);
static LIST_HEAD(bq27xxx_battery_devices);
#define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500)
#define BQ27XXX_DM_SZ 32
/**
* struct bq27xxx_dm_buf - chip data memory buffer
* @class: data memory subclass_id
* @block: data memory block number
* @data: data from/for the block
* @has_data: true if data has been filled by read
* @dirty: true if data has changed since last read/write
*
* Encapsulates info required to manage chip data memory blocks.
*/
struct bq27xxx_dm_buf {
u8 class;
u8 block;
u8 data[BQ27XXX_DM_SZ];
bool has_data, dirty;
};
#define BQ27XXX_DM_BUF(di, i) { \
.class = (di)->dm_regs[i].subclass_id, \
.block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \
}
static inline u16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf,
struct bq27xxx_dm_reg *reg)
{
if (buf->class == reg->subclass_id &&
buf->block == reg->offset / BQ27XXX_DM_SZ)
return (u16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ);
return NULL;
}
static const char * const bq27xxx_dm_reg_name[] = {
[BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity",
[BQ27XXX_DM_DESIGN_ENERGY] = "design-energy",
[BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage",
};
static bool bq27xxx_dt_to_nvm = true;
module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444);
MODULE_PARM_DESC(dt_monitored_battery_updates_nvm,
"Devicetree monitored-battery config updates data memory on NVM/flash chips.\n"
"Users must set this =0 when installing a different type of battery!\n"
"Default is =1."
#ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
"\nSetting this affects future kernel updates, not the current configuration."
#endif
);
static int poll_interval_param_set(const char *val, const struct kernel_param *kp)
{
struct bq27xxx_device_info *di;
unsigned int prev_val = *(unsigned int *) kp->arg;
int ret;
ret = param_set_uint(val, kp);
if (ret < 0 || prev_val == *(unsigned int *) kp->arg)
return ret;
mutex_lock(&bq27xxx_list_lock);
list_for_each_entry(di, &bq27xxx_battery_devices, list) {
cancel_delayed_work_sync(&di->work);
schedule_delayed_work(&di->work, 0);
}
mutex_unlock(&bq27xxx_list_lock);
return ret;
}
static const struct kernel_param_ops param_ops_poll_interval = {
.get = param_get_uint,
.set = poll_interval_param_set,
};
static unsigned int poll_interval = 360;
module_param_cb(poll_interval, &param_ops_poll_interval, &poll_interval, 0644);
MODULE_PARM_DESC(poll_interval,
"battery poll interval in seconds - 0 disables polling");
/*
* Common code for BQ27xxx devices
*/
static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index,
bool single)
{
int ret;
if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
return -EINVAL;
ret = di->bus.read(di, di->regs[reg_index], single);
if (ret < 0)
dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n",
di->regs[reg_index], reg_index);
return ret;
}
static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index,
u16 value, bool single)
{
int ret;
if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
return -EINVAL;
if (!di->bus.write)
return -EPERM;
ret = di->bus.write(di, di->regs[reg_index], value, single);
if (ret < 0)
dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n",
di->regs[reg_index], reg_index);
return ret;
}
static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index,
u8 *data, int len)
{
int ret;
if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
return -EINVAL;
if (!di->bus.read_bulk)
return -EPERM;
ret = di->bus.read_bulk(di, di->regs[reg_index], data, len);
if (ret < 0)
dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n",
di->regs[reg_index], reg_index);
return ret;
}
static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index,
u8 *data, int len)
{
int ret;
if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
return -EINVAL;
if (!di->bus.write_bulk)
return -EPERM;
ret = di->bus.write_bulk(di, di->regs[reg_index], data, len);
if (ret < 0)
dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n",
di->regs[reg_index], reg_index);
return ret;
}
static int bq27xxx_battery_seal(struct bq27xxx_device_info *di)
{
int ret;
ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false);
if (ret < 0) {
dev_err(di->dev, "bus error on seal: %d\n", ret);
return ret;
}
return 0;
}
static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di)
{
int ret;
if (di->unseal_key == 0) {
dev_err(di->dev, "unseal failed due to missing key\n");
return -EINVAL;
}
ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false);
if (ret < 0)
goto out;
ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false);
if (ret < 0)
goto out;
return 0;
out:
dev_err(di->dev, "bus error on unseal: %d\n", ret);
return ret;
}
static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf)
{
u16 sum = 0;
int i;
for (i = 0; i < BQ27XXX_DM_SZ; i++)
sum += buf->data[i];
sum &= 0xff;
return 0xff - sum;
}
static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di,
struct bq27xxx_dm_buf *buf)
{
int ret;
buf->has_data = false;
ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
if (ret < 0)
goto out;
ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
if (ret < 0)
goto out;
BQ27XXX_MSLEEP(1);
ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
if (ret < 0)
goto out;
ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true);
if (ret < 0)
goto out;
if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) {
ret = -EINVAL;
goto out;
}
buf->has_data = true;
buf->dirty = false;
return 0;
out:
dev_err(di->dev, "bus error reading chip memory: %d\n", ret);
return ret;
}
static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di,
struct bq27xxx_dm_buf *buf,
enum bq27xxx_dm_reg_id reg_id,
unsigned int val)
{
struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id];
const char *str = bq27xxx_dm_reg_name[reg_id];
u16 *prev = bq27xxx_dm_reg_ptr(buf, reg);
if (prev == NULL) {
dev_warn(di->dev, "buffer does not match %s dm spec\n", str);
return;
}
if (reg->bytes != 2) {
dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str);
return;
}
if (!buf->has_data)
return;
if (be16_to_cpup(prev) == val) {
dev_info(di->dev, "%s has %u\n", str, val);
return;
}
#ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) {
#else
if (!(di->opts & BQ27XXX_O_RAM)) {
#endif
/* devicetree and NVM differ; defer to NVM */
dev_warn(di->dev, "%s has %u; update to %u disallowed "
#ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
"by dt_monitored_battery_updates_nvm=0"
#else
"for flash/NVM data memory"
#endif
"\n", str, be16_to_cpup(prev), val);
return;
}
dev_info(di->dev, "update %s to %u\n", str, val);
*prev = cpu_to_be16(val);
buf->dirty = true;
}
static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active)
{
const int limit = 100;
u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET;
int ret, try = limit;
ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false);
if (ret < 0)
return ret;
do {
BQ27XXX_MSLEEP(25);
ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
if (ret < 0)
return ret;
} while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try);
if (!try && di->chip != BQ27425) { // 425 has a bug
dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active);
return -EINVAL;
}
if (limit - try > 3)
dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try);
return 0;
}
static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di)
{
int ret = bq27xxx_battery_cfgupdate_priv(di, true);
if (ret < 0 && ret != -EINVAL)
dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret);
return ret;
}
static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di)
{
int ret = bq27xxx_battery_cfgupdate_priv(di, false);
if (ret < 0 && ret != -EINVAL)
dev_err(di->dev, "bus error on soft_reset: %d\n", ret);
return ret;
}
static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di,
struct bq27xxx_dm_buf *buf)
{
bool cfgup = di->opts & BQ27XXX_O_CFGUP;
int ret;
if (!buf->dirty)
return 0;
if (cfgup) {
ret = bq27xxx_battery_set_cfgupdate(di);
if (ret < 0)
return ret;
}
ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true);
if (ret < 0)
goto out;
ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
if (ret < 0)
goto out;
ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
if (ret < 0)
goto out;
BQ27XXX_MSLEEP(1);
ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
if (ret < 0)
goto out;
ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM,
bq27xxx_battery_checksum_dm_block(buf), true);
if (ret < 0)
goto out;
/* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM
* corruption on the '425 chip (and perhaps others), which can damage
* the chip.
*/
if (cfgup) {
BQ27XXX_MSLEEP(1);
ret = bq27xxx_battery_soft_reset(di);
if (ret < 0)
return ret;
} else {
BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */
}
buf->dirty = false;
return 0;
out:
if (cfgup)
bq27xxx_battery_soft_reset(di);
dev_err(di->dev, "bus error writing chip memory: %d\n", ret);
return ret;
}
static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di,
struct power_supply_battery_info *info)
{
struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY);
struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE);
bool updated;
if (bq27xxx_battery_unseal(di) < 0)
return;
if (info->charge_full_design_uah != -EINVAL &&
info->energy_full_design_uwh != -EINVAL) {
bq27xxx_battery_read_dm_block(di, &bd);
/* assume design energy & capacity are in same block */
bq27xxx_battery_update_dm_block(di, &bd,
BQ27XXX_DM_DESIGN_CAPACITY,
info->charge_full_design_uah / 1000);
bq27xxx_battery_update_dm_block(di, &bd,
BQ27XXX_DM_DESIGN_ENERGY,
info->energy_full_design_uwh / 1000);
}
if (info->voltage_min_design_uv != -EINVAL) {
bool same = bd.class == bt.class && bd.block == bt.block;
if (!same)
bq27xxx_battery_read_dm_block(di, &bt);
bq27xxx_battery_update_dm_block(di, same ? &bd : &bt,
BQ27XXX_DM_TERMINATE_VOLTAGE,
info->voltage_min_design_uv / 1000);
}
updated = bd.dirty || bt.dirty;
bq27xxx_battery_write_dm_block(di, &bd);
bq27xxx_battery_write_dm_block(di, &bt);
bq27xxx_battery_seal(di);
if (updated && !(di->opts & BQ27XXX_O_CFGUP)) {
bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false);
BQ27XXX_MSLEEP(300); /* reset time is not documented */
}
/* assume bq27xxx_battery_update() is called hereafter */
}
static void bq27xxx_battery_settings(struct bq27xxx_device_info *di)
{
struct power_supply_battery_info info = {};
unsigned int min, max;
if (power_supply_get_battery_info(di->bat, &info) < 0)
return;
if (!di->dm_regs) {
dev_warn(di->dev, "data memory update not supported for chip\n");
return;
}
if (info.energy_full_design_uwh != info.charge_full_design_uah) {
if (info.energy_full_design_uwh == -EINVAL)
dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n");
else if (info.charge_full_design_uah == -EINVAL)
dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n");
}
/* assume min == 0 */
max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max;
if (info.energy_full_design_uwh > max * 1000) {
dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n",
info.energy_full_design_uwh);
info.energy_full_design_uwh = -EINVAL;
}
/* assume min == 0 */
max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max;
if (info.charge_full_design_uah > max * 1000) {
dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n",
info.charge_full_design_uah);
info.charge_full_design_uah = -EINVAL;
}
min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min;
max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max;
if ((info.voltage_min_design_uv < min * 1000 ||
info.voltage_min_design_uv > max * 1000) &&
info.voltage_min_design_uv != -EINVAL) {
dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n",
info.voltage_min_design_uv);
info.voltage_min_design_uv = -EINVAL;
}
if ((info.energy_full_design_uwh != -EINVAL &&
info.charge_full_design_uah != -EINVAL) ||
info.voltage_min_design_uv != -EINVAL)
bq27xxx_battery_set_config(di, &info);
}
/*
* Return the battery State-of-Charge
* Or < 0 if something fails.
*/
static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di)
{
int soc;
if (di->opts & BQ27XXX_O_ZERO)
soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true);
else
soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false);
if (soc < 0)
dev_dbg(di->dev, "error reading State-of-Charge\n");
return soc;
}
/*
* Return a battery charge value in µAh
* Or < 0 if something fails.
*/
static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg)
{
int charge;
charge = bq27xxx_read(di, reg, false);
if (charge < 0) {
dev_dbg(di->dev, "error reading charge register %02x: %d\n",
reg, charge);
return charge;
}
if (di->opts & BQ27XXX_O_ZERO)
charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
else
charge *= 1000;
return charge;
}
/*
* Return the battery Nominal available capacity in µAh
* Or < 0 if something fails.
*/
static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di)
{
int flags;
if (di->opts & BQ27XXX_O_ZERO) {
flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
if (flags >= 0 && (flags & BQ27000_FLAG_CI))
return -ENODATA;
}
return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC);
}
/*
* Return the battery Full Charge Capacity in µAh
* Or < 0 if something fails.
*/
static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di)
{
return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC);
}
/*
* Return the Design Capacity in µAh
* Or < 0 if something fails.
*/
static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di)
{
int dcap;
if (di->opts & BQ27XXX_O_ZERO)
dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true);
else
dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false);
if (dcap < 0) {
dev_dbg(di->dev, "error reading initial last measured discharge\n");
return dcap;
}
if (di->opts & BQ27XXX_O_ZERO)
dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
else
dcap *= 1000;
return dcap;
}
/*
* Return the battery Available energy in µWh
* Or < 0 if something fails.
*/
static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di)
{
int ae;
ae = bq27xxx_read(di, BQ27XXX_REG_AE, false);
if (ae < 0) {
dev_dbg(di->dev, "error reading available energy\n");
return ae;
}
if (di->opts & BQ27XXX_O_ZERO)
ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS;
else
ae *= 1000;
return ae;
}
/*
* Return the battery temperature in tenths of degree Kelvin
* Or < 0 if something fails.
*/
static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di)
{
int temp;
temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false);
if (temp < 0) {
dev_err(di->dev, "error reading temperature\n");
return temp;
}
if (di->opts & BQ27XXX_O_ZERO)
temp = 5 * temp / 2;
return temp;
}
/*
* Return the battery Cycle count total
* Or < 0 if something fails.
*/
static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di)
{
int cyct;
cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false);
if (cyct < 0)
dev_err(di->dev, "error reading cycle count total\n");
return cyct;
}
/*
* Read a time register.
* Return < 0 if something fails.
*/
static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg)
{
int tval;
tval = bq27xxx_read(di, reg, false);
if (tval < 0) {
dev_dbg(di->dev, "error reading time register %02x: %d\n",
reg, tval);
return tval;
}
if (tval == 65535)
return -ENODATA;
return tval * 60;
}
/*
* Returns true if a battery over temperature condition is detected
*/
static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags)
{
if (di->opts & BQ27XXX_O_OTDC)
return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD);
if (di->opts & BQ27XXX_O_UTOT)
return flags & BQ27XXX_FLAG_OT;
return false;
}
/*
* Returns true if a battery under temperature condition is detected
*/
static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags)
{
if (di->opts & BQ27XXX_O_UTOT)
return flags & BQ27XXX_FLAG_UT;
return false;
}
/*
* Returns true if a low state of charge condition is detected
*/
static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags)
{
if (di->opts & BQ27XXX_O_ZERO)
return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF);
else
return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF);
}
/*
* Read flag register.
* Return < 0 if something fails.
*/
static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di)
{
int flags;
bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
if (flags < 0) {
dev_err(di->dev, "error reading flag register:%d\n", flags);
return flags;
}
/* Unlikely but important to return first */
if (unlikely(bq27xxx_battery_overtemp(di, flags)))
return POWER_SUPPLY_HEALTH_OVERHEAT;
if (unlikely(bq27xxx_battery_undertemp(di, flags)))
return POWER_SUPPLY_HEALTH_COLD;
if (unlikely(bq27xxx_battery_dead(di, flags)))
return POWER_SUPPLY_HEALTH_DEAD;
return POWER_SUPPLY_HEALTH_GOOD;
}
void bq27xxx_battery_update(struct bq27xxx_device_info *di)
{
struct bq27xxx_reg_cache cache = {0, };
bool has_ci_flag = di->opts & BQ27XXX_O_ZERO;
bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
if ((cache.flags & 0xff) == 0xff)
cache.flags = -1; /* read error */
if (cache.flags >= 0) {
cache.temperature = bq27xxx_battery_read_temperature(di);
if (has_ci_flag && (cache.flags & BQ27000_FLAG_CI)) {
dev_info_once(di->dev, "battery is not calibrated! ignoring capacity values\n");
cache.capacity = -ENODATA;
cache.energy = -ENODATA;
cache.time_to_empty = -ENODATA;
cache.time_to_empty_avg = -ENODATA;
cache.time_to_full = -ENODATA;
cache.charge_full = -ENODATA;
cache.health = -ENODATA;
} else {
if (di->regs[BQ27XXX_REG_TTE] != INVALID_REG_ADDR)
cache.time_to_empty = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE);
if (di->regs[BQ27XXX_REG_TTECP] != INVALID_REG_ADDR)
cache.time_to_empty_avg = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP);
if (di->regs[BQ27XXX_REG_TTF] != INVALID_REG_ADDR)
cache.time_to_full = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF);
cache.charge_full = bq27xxx_battery_read_fcc(di);
cache.capacity = bq27xxx_battery_read_soc(di);
if (di->regs[BQ27XXX_REG_AE] != INVALID_REG_ADDR)
cache.energy = bq27xxx_battery_read_energy(di);
cache.health = bq27xxx_battery_read_health(di);
}
if (di->regs[BQ27XXX_REG_CYCT] != INVALID_REG_ADDR)
cache.cycle_count = bq27xxx_battery_read_cyct(di);
/* We only have to read charge design full once */
if (di->charge_design_full <= 0)
di->charge_design_full = bq27xxx_battery_read_dcap(di);
}
if (di->cache.capacity != cache.capacity)
power_supply_changed(di->bat);
if (memcmp(&di->cache, &cache, sizeof(cache)) != 0)
di->cache = cache;
di->last_update = jiffies;
}
EXPORT_SYMBOL_GPL(bq27xxx_battery_update);
static void bq27xxx_battery_poll(struct work_struct *work)
{
struct bq27xxx_device_info *di =
container_of(work, struct bq27xxx_device_info,
work.work);
bq27xxx_battery_update(di);
if (poll_interval > 0)
schedule_delayed_work(&di->work, poll_interval * HZ);
}
/*
* Return the battery average current in µA
* Note that current can be negative signed as well
* Or 0 if something fails.
*/
static int bq27xxx_battery_current(struct bq27xxx_device_info *di,
union power_supply_propval *val)
{
int curr;
int flags;
curr = bq27xxx_read(di, BQ27XXX_REG_AI, false);
if (curr < 0) {
dev_err(di->dev, "error reading current\n");
return curr;
}
if (di->opts & BQ27XXX_O_ZERO) {
flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
if (flags & BQ27000_FLAG_CHGS) {
dev_dbg(di->dev, "negative current!\n");
curr = -curr;
}
val->intval = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
} else {
/* Other gauges return signed value */
val->intval = (int)((s16)curr) * 1000;
}
return 0;
}
/*
* Get the average power in µW
* Return < 0 if something fails.
*/
static int bq27xxx_battery_pwr_avg(struct bq27xxx_device_info *di,
union power_supply_propval *val)
{
int power;
power = bq27xxx_read(di, BQ27XXX_REG_AP, false);
if (power < 0) {
dev_err(di->dev,
"error reading average power register %02x: %d\n",
BQ27XXX_REG_AP, power);
return power;
}
if (di->opts & BQ27XXX_O_ZERO)
val->intval = (power * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS;
else
/* Other gauges return a signed value in units of 10mW */
val->intval = (int)((s16)power) * 10000;
return 0;
}
static int bq27xxx_battery_status(struct bq27xxx_device_info *di,
union power_supply_propval *val)
{
int status;
if (di->opts & BQ27XXX_O_ZERO) {
if (di->cache.flags & BQ27000_FLAG_FC)
status = POWER_SUPPLY_STATUS_FULL;
else if (di->cache.flags & BQ27000_FLAG_CHGS)
status = POWER_SUPPLY_STATUS_CHARGING;
else
status = POWER_SUPPLY_STATUS_DISCHARGING;
} else {
if (di->cache.flags & BQ27XXX_FLAG_FC)
status = POWER_SUPPLY_STATUS_FULL;
else if (di->cache.flags & BQ27XXX_FLAG_DSC)
status = POWER_SUPPLY_STATUS_DISCHARGING;
else
status = POWER_SUPPLY_STATUS_CHARGING;
}
if ((status == POWER_SUPPLY_STATUS_DISCHARGING) &&
(power_supply_am_i_supplied(di->bat) > 0))
status = POWER_SUPPLY_STATUS_NOT_CHARGING;
val->intval = status;
return 0;
}
static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di,
union power_supply_propval *val)
{
int level;
if (di->opts & BQ27XXX_O_ZERO) {
if (di->cache.flags & BQ27000_FLAG_FC)
level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
else if (di->cache.flags & BQ27000_FLAG_EDV1)
level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (di->cache.flags & BQ27000_FLAG_EDVF)
level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else
level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
} else {
if (di->cache.flags & BQ27XXX_FLAG_FC)
level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
else if (di->cache.flags & BQ27XXX_FLAG_SOC1)
level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (di->cache.flags & BQ27XXX_FLAG_SOCF)
level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else
level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
}
val->intval = level;
return 0;
}
/*
* Return the battery Voltage in millivolts
* Or < 0 if something fails.
*/
static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di,
union power_supply_propval *val)
{
int volt;
volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false);
if (volt < 0) {
dev_err(di->dev, "error reading voltage\n");
return volt;
}
val->intval = volt * 1000;
return 0;
}
static int bq27xxx_simple_value(int value,
union power_supply_propval *val)
{
if (value < 0)
return value;
val->intval = value;
return 0;
}
static int bq27xxx_battery_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret = 0;
struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
mutex_lock(&di->lock);
if (time_is_before_jiffies(di->last_update + 5 * HZ)) {
cancel_delayed_work_sync(&di->work);
bq27xxx_battery_poll(&di->work.work);
}
mutex_unlock(&di->lock);
if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
return -ENODEV;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
ret = bq27xxx_battery_status(di, val);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
ret = bq27xxx_battery_voltage(di, val);
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = di->cache.flags < 0 ? 0 : 1;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
ret = bq27xxx_battery_current(di, val);
break;
case POWER_SUPPLY_PROP_CAPACITY:
ret = bq27xxx_simple_value(di->cache.capacity, val);
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
ret = bq27xxx_battery_capacity_level(di, val);
break;
case POWER_SUPPLY_PROP_TEMP:
ret = bq27xxx_simple_value(di->cache.temperature, val);
if (ret == 0)
val->intval -= 2731; /* convert decidegree k to c */
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
ret = bq27xxx_simple_value(di->cache.time_to_empty, val);
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
ret = bq27xxx_simple_value(di->cache.time_to_empty_avg, val);
break;
case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
ret = bq27xxx_simple_value(di->cache.time_to_full, val);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_CHARGE_NOW:
ret = bq27xxx_simple_value(bq27xxx_battery_read_nac(di), val);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
ret = bq27xxx_simple_value(di->cache.charge_full, val);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
ret = bq27xxx_simple_value(di->charge_design_full, val);
break;
/*
* TODO: Implement these to make registers set from
* power_supply_battery_info visible in sysfs.
*/
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
return -EINVAL;
case POWER_SUPPLY_PROP_CYCLE_COUNT:
ret = bq27xxx_simple_value(di->cache.cycle_count, val);
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
ret = bq27xxx_simple_value(di->cache.energy, val);
break;
case POWER_SUPPLY_PROP_POWER_AVG:
ret = bq27xxx_battery_pwr_avg(di, val);
break;
case POWER_SUPPLY_PROP_HEALTH:
ret = bq27xxx_simple_value(di->cache.health, val);
break;
case POWER_SUPPLY_PROP_MANUFACTURER:
val->strval = BQ27XXX_MANUFACTURER;
break;
default:
return -EINVAL;
}
return ret;
}
static void bq27xxx_external_power_changed(struct power_supply *psy)
{
struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
cancel_delayed_work_sync(&di->work);
schedule_delayed_work(&di->work, 0);
}
int bq27xxx_battery_setup(struct bq27xxx_device_info *di)
{
struct power_supply_desc *psy_desc;
struct power_supply_config psy_cfg = {
.of_node = di->dev->of_node,
.drv_data = di,
};
INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll);
mutex_init(&di->lock);
di->regs = bq27xxx_chip_data[di->chip].regs;
di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key;
di->dm_regs = bq27xxx_chip_data[di->chip].dm_regs;
di->opts = bq27xxx_chip_data[di->chip].opts;
psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL);
if (!psy_desc)
return -ENOMEM;
psy_desc->name = di->name;
psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
psy_desc->properties = bq27xxx_chip_data[di->chip].props;
psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size;
psy_desc->get_property = bq27xxx_battery_get_property;
psy_desc->external_power_changed = bq27xxx_external_power_changed;
di->bat = power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg);
if (IS_ERR(di->bat)) {
if (PTR_ERR(di->bat) == -EPROBE_DEFER)
dev_dbg(di->dev, "failed to register battery, deferring probe\n");
else
dev_err(di->dev, "failed to register battery\n");
return PTR_ERR(di->bat);
}
bq27xxx_battery_settings(di);
bq27xxx_battery_update(di);
mutex_lock(&bq27xxx_list_lock);
list_add(&di->list, &bq27xxx_battery_devices);
mutex_unlock(&bq27xxx_list_lock);
return 0;
}
EXPORT_SYMBOL_GPL(bq27xxx_battery_setup);
void bq27xxx_battery_teardown(struct bq27xxx_device_info *di)
{
/*
* power_supply_unregister call bq27xxx_battery_get_property which
* call bq27xxx_battery_poll.
* Make sure that bq27xxx_battery_poll will not call
* schedule_delayed_work again after unregister (which cause OOPS).
*/
poll_interval = 0;
cancel_delayed_work_sync(&di->work);
power_supply_unregister(di->bat);
mutex_lock(&bq27xxx_list_lock);
list_del(&di->list);
mutex_unlock(&bq27xxx_list_lock);
mutex_destroy(&di->lock);
}
EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown);
MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
MODULE_DESCRIPTION("BQ27xxx battery monitor driver");
MODULE_LICENSE("GPL");