android_kernel_xiaomi_sm7250/arch/ia64/kernel/salinfo.c
Hidetoshi Seto 43ed3baf62 [IA64] printing support for MCA/INIT
Printing message to console from MCA/INIT handler is useful,
however doing oops_in_progress = 1 in them exactly makes
something in kernel wrong. Especially it sounds ugly if
system goes wrong after returning from recoverable MCA.

This patch adds ia64_mca_printk() function that collects
messages into temporary-not-so-large message buffer during
in MCA/INIT environment and print them out later, after
returning to normal context or when handlers determine to
down the system.

Also this print function is exported for use in extensional
MCA handler. It would be useful to describe detail about
recovery.

NOTE:
I don't think it is sane thing if temporary message buffer
is enlarged enough to hold whole stack dumps from INIT, so
buffering is disabled during stack dump from INIT-monarch
(= default_monarch_init_process). please fix it in future.

Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-09-26 14:44:37 -07:00

708 lines
20 KiB
C

/*
* salinfo.c
*
* Creates entries in /proc/sal for various system features.
*
* Copyright (c) 2003, 2006 Silicon Graphics, Inc. All rights reserved.
* Copyright (c) 2003 Hewlett-Packard Co
* Bjorn Helgaas <bjorn.helgaas@hp.com>
*
* 10/30/2001 jbarnes@sgi.com copied much of Stephane's palinfo
* code to create this file
* Oct 23 2003 kaos@sgi.com
* Replace IPI with set_cpus_allowed() to read a record from the required cpu.
* Redesign salinfo log processing to separate interrupt and user space
* contexts.
* Cache the record across multi-block reads from user space.
* Support > 64 cpus.
* Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
*
* Jan 28 2004 kaos@sgi.com
* Periodically check for outstanding MCA or INIT records.
*
* Dec 5 2004 kaos@sgi.com
* Standardize which records are cleared automatically.
*
* Aug 18 2005 kaos@sgi.com
* mca.c may not pass a buffer, a NULL buffer just indicates that a new
* record is available in SAL.
* Replace some NR_CPUS by cpus_online, for hotplug cpu.
*
* Jan 5 2006 kaos@sgi.com
* Handle hotplug cpus coming online.
* Handle hotplug cpus going offline while they still have outstanding records.
* Use the cpu_* macros consistently.
* Replace the counting semaphore with a mutex and a test if the cpumask is non-empty.
* Modify the locking to make the test for "work to do" an atomic operation.
*/
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
#include <asm/semaphore.h>
#include <asm/sal.h>
#include <asm/uaccess.h>
MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
MODULE_LICENSE("GPL");
static int salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data);
typedef struct {
const char *name; /* name of the proc entry */
unsigned long feature; /* feature bit */
struct proc_dir_entry *entry; /* registered entry (removal) */
} salinfo_entry_t;
/*
* List {name,feature} pairs for every entry in /proc/sal/<feature>
* that this module exports
*/
static salinfo_entry_t salinfo_entries[]={
{ "bus_lock", IA64_SAL_PLATFORM_FEATURE_BUS_LOCK, },
{ "irq_redirection", IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT, },
{ "ipi_redirection", IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT, },
{ "itc_drift", IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT, },
};
#define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
static char *salinfo_log_name[] = {
"mca",
"init",
"cmc",
"cpe",
};
static struct proc_dir_entry *salinfo_proc_entries[
ARRAY_SIZE(salinfo_entries) + /* /proc/sal/bus_lock */
ARRAY_SIZE(salinfo_log_name) + /* /proc/sal/{mca,...} */
(2 * ARRAY_SIZE(salinfo_log_name)) + /* /proc/sal/mca/{event,data} */
1]; /* /proc/sal */
/* Some records we get ourselves, some are accessed as saved data in buffers
* that are owned by mca.c.
*/
struct salinfo_data_saved {
u8* buffer;
u64 size;
u64 id;
int cpu;
};
/* State transitions. Actions are :-
* Write "read <cpunum>" to the data file.
* Write "clear <cpunum>" to the data file.
* Write "oemdata <cpunum> <offset> to the data file.
* Read from the data file.
* Close the data file.
*
* Start state is NO_DATA.
*
* NO_DATA
* write "read <cpunum>" -> NO_DATA or LOG_RECORD.
* write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
* write "oemdata <cpunum> <offset> -> return -EINVAL.
* read data -> return EOF.
* close -> unchanged. Free record areas.
*
* LOG_RECORD
* write "read <cpunum>" -> NO_DATA or LOG_RECORD.
* write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
* write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
* read data -> return the INIT/MCA/CMC/CPE record.
* close -> unchanged. Keep record areas.
*
* OEMDATA
* write "read <cpunum>" -> NO_DATA or LOG_RECORD.
* write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
* write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
* read data -> return the formatted oemdata.
* close -> unchanged. Keep record areas.
*
* Closing the data file does not change the state. This allows shell scripts
* to manipulate salinfo data, each shell redirection opens the file, does one
* action then closes it again. The record areas are only freed at close when
* the state is NO_DATA.
*/
enum salinfo_state {
STATE_NO_DATA,
STATE_LOG_RECORD,
STATE_OEMDATA,
};
struct salinfo_data {
cpumask_t cpu_event; /* which cpus have outstanding events */
struct semaphore mutex;
u8 *log_buffer;
u64 log_size;
u8 *oemdata; /* decoded oem data */
u64 oemdata_size;
int open; /* single-open to prevent races */
u8 type;
u8 saved_num; /* using a saved record? */
enum salinfo_state state :8; /* processing state */
u8 padding;
int cpu_check; /* next CPU to check */
struct salinfo_data_saved data_saved[5];/* save last 5 records from mca.c, must be < 255 */
};
static struct salinfo_data salinfo_data[ARRAY_SIZE(salinfo_log_name)];
static DEFINE_SPINLOCK(data_lock);
static DEFINE_SPINLOCK(data_saved_lock);
/** salinfo_platform_oemdata - optional callback to decode oemdata from an error
* record.
* @sect_header: pointer to the start of the section to decode.
* @oemdata: returns vmalloc area containing the decded output.
* @oemdata_size: returns length of decoded output (strlen).
*
* Description: If user space asks for oem data to be decoded by the kernel
* and/or prom and the platform has set salinfo_platform_oemdata to the address
* of a platform specific routine then call that routine. salinfo_platform_oemdata
* vmalloc's and formats its output area, returning the address of the text
* and its strlen. Returns 0 for success, -ve for error. The callback is
* invoked on the cpu that generated the error record.
*/
int (*salinfo_platform_oemdata)(const u8 *sect_header, u8 **oemdata, u64 *oemdata_size);
struct salinfo_platform_oemdata_parms {
const u8 *efi_guid;
u8 **oemdata;
u64 *oemdata_size;
int ret;
};
/* Kick the mutex that tells user space that there is work to do. Instead of
* trying to track the state of the mutex across multiple cpus, in user
* context, interrupt context, non-maskable interrupt context and hotplug cpu,
* it is far easier just to grab the mutex if it is free then release it.
*
* This routine must be called with data_saved_lock held, to make the down/up
* operation atomic.
*/
static void
salinfo_work_to_do(struct salinfo_data *data)
{
down_trylock(&data->mutex);
up(&data->mutex);
}
static void
salinfo_platform_oemdata_cpu(void *context)
{
struct salinfo_platform_oemdata_parms *parms = context;
parms->ret = salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
}
static void
shift1_data_saved (struct salinfo_data *data, int shift)
{
memcpy(data->data_saved+shift, data->data_saved+shift+1,
(ARRAY_SIZE(data->data_saved) - (shift+1)) * sizeof(data->data_saved[0]));
memset(data->data_saved + ARRAY_SIZE(data->data_saved) - 1, 0,
sizeof(data->data_saved[0]));
}
/* This routine is invoked in interrupt context. Note: mca.c enables
* interrupts before calling this code for CMC/CPE. MCA and INIT events are
* not irq safe, do not call any routines that use spinlocks, they may deadlock.
* MCA and INIT records are recorded, a timer event will look for any
* outstanding events and wake up the user space code.
*
* The buffer passed from mca.c points to the output from ia64_log_get. This is
* a persistent buffer but its contents can change between the interrupt and
* when user space processes the record. Save the record id to identify
* changes. If the buffer is NULL then just update the bitmap.
*/
void
salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe)
{
struct salinfo_data *data = salinfo_data + type;
struct salinfo_data_saved *data_saved;
unsigned long flags = 0;
int i;
int saved_size = ARRAY_SIZE(data->data_saved);
BUG_ON(type >= ARRAY_SIZE(salinfo_log_name));
if (irqsafe)
spin_lock_irqsave(&data_saved_lock, flags);
if (buffer) {
for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
if (!data_saved->buffer)
break;
}
if (i == saved_size) {
if (!data->saved_num) {
shift1_data_saved(data, 0);
data_saved = data->data_saved + saved_size - 1;
} else
data_saved = NULL;
}
if (data_saved) {
data_saved->cpu = smp_processor_id();
data_saved->id = ((sal_log_record_header_t *)buffer)->id;
data_saved->size = size;
data_saved->buffer = buffer;
}
}
cpu_set(smp_processor_id(), data->cpu_event);
if (irqsafe) {
salinfo_work_to_do(data);
spin_unlock_irqrestore(&data_saved_lock, flags);
}
}
/* Check for outstanding MCA/INIT records every minute (arbitrary) */
#define SALINFO_TIMER_DELAY (60*HZ)
static struct timer_list salinfo_timer;
extern void ia64_mlogbuf_dump(void);
static void
salinfo_timeout_check(struct salinfo_data *data)
{
unsigned long flags;
if (!data->open)
return;
if (!cpus_empty(data->cpu_event)) {
spin_lock_irqsave(&data_saved_lock, flags);
salinfo_work_to_do(data);
spin_unlock_irqrestore(&data_saved_lock, flags);
}
}
static void
salinfo_timeout (unsigned long arg)
{
ia64_mlogbuf_dump();
salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_MCA);
salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_INIT);
salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
add_timer(&salinfo_timer);
}
static int
salinfo_event_open(struct inode *inode, struct file *file)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
static ssize_t
salinfo_event_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct inode *inode = file->f_dentry->d_inode;
struct proc_dir_entry *entry = PDE(inode);
struct salinfo_data *data = entry->data;
char cmd[32];
size_t size;
int i, n, cpu = -1;
retry:
if (cpus_empty(data->cpu_event) && down_trylock(&data->mutex)) {
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
if (down_interruptible(&data->mutex))
return -EINTR;
}
n = data->cpu_check;
for (i = 0; i < NR_CPUS; i++) {
if (cpu_isset(n, data->cpu_event)) {
if (!cpu_online(n)) {
cpu_clear(n, data->cpu_event);
continue;
}
cpu = n;
break;
}
if (++n == NR_CPUS)
n = 0;
}
if (cpu == -1)
goto retry;
ia64_mlogbuf_dump();
/* for next read, start checking at next CPU */
data->cpu_check = cpu;
if (++data->cpu_check == NR_CPUS)
data->cpu_check = 0;
snprintf(cmd, sizeof(cmd), "read %d\n", cpu);
size = strlen(cmd);
if (size > count)
size = count;
if (copy_to_user(buffer, cmd, size))
return -EFAULT;
return size;
}
static struct file_operations salinfo_event_fops = {
.open = salinfo_event_open,
.read = salinfo_event_read,
};
static int
salinfo_log_open(struct inode *inode, struct file *file)
{
struct proc_dir_entry *entry = PDE(inode);
struct salinfo_data *data = entry->data;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
spin_lock(&data_lock);
if (data->open) {
spin_unlock(&data_lock);
return -EBUSY;
}
data->open = 1;
spin_unlock(&data_lock);
if (data->state == STATE_NO_DATA &&
!(data->log_buffer = vmalloc(ia64_sal_get_state_info_size(data->type)))) {
data->open = 0;
return -ENOMEM;
}
return 0;
}
static int
salinfo_log_release(struct inode *inode, struct file *file)
{
struct proc_dir_entry *entry = PDE(inode);
struct salinfo_data *data = entry->data;
if (data->state == STATE_NO_DATA) {
vfree(data->log_buffer);
vfree(data->oemdata);
data->log_buffer = NULL;
data->oemdata = NULL;
}
spin_lock(&data_lock);
data->open = 0;
spin_unlock(&data_lock);
return 0;
}
static void
call_on_cpu(int cpu, void (*fn)(void *), void *arg)
{
cpumask_t save_cpus_allowed = current->cpus_allowed;
cpumask_t new_cpus_allowed = cpumask_of_cpu(cpu);
set_cpus_allowed(current, new_cpus_allowed);
(*fn)(arg);
set_cpus_allowed(current, save_cpus_allowed);
}
static void
salinfo_log_read_cpu(void *context)
{
struct salinfo_data *data = context;
sal_log_record_header_t *rh;
data->log_size = ia64_sal_get_state_info(data->type, (u64 *) data->log_buffer);
rh = (sal_log_record_header_t *)(data->log_buffer);
/* Clear corrected errors as they are read from SAL */
if (rh->severity == sal_log_severity_corrected)
ia64_sal_clear_state_info(data->type);
}
static void
salinfo_log_new_read(int cpu, struct salinfo_data *data)
{
struct salinfo_data_saved *data_saved;
unsigned long flags;
int i;
int saved_size = ARRAY_SIZE(data->data_saved);
data->saved_num = 0;
spin_lock_irqsave(&data_saved_lock, flags);
retry:
for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
if (data_saved->buffer && data_saved->cpu == cpu) {
sal_log_record_header_t *rh = (sal_log_record_header_t *)(data_saved->buffer);
data->log_size = data_saved->size;
memcpy(data->log_buffer, rh, data->log_size);
barrier(); /* id check must not be moved */
if (rh->id == data_saved->id) {
data->saved_num = i+1;
break;
}
/* saved record changed by mca.c since interrupt, discard it */
shift1_data_saved(data, i);
goto retry;
}
}
spin_unlock_irqrestore(&data_saved_lock, flags);
if (!data->saved_num)
call_on_cpu(cpu, salinfo_log_read_cpu, data);
if (!data->log_size) {
data->state = STATE_NO_DATA;
cpu_clear(cpu, data->cpu_event);
} else {
data->state = STATE_LOG_RECORD;
}
}
static ssize_t
salinfo_log_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct inode *inode = file->f_dentry->d_inode;
struct proc_dir_entry *entry = PDE(inode);
struct salinfo_data *data = entry->data;
u8 *buf;
u64 bufsize;
if (data->state == STATE_LOG_RECORD) {
buf = data->log_buffer;
bufsize = data->log_size;
} else if (data->state == STATE_OEMDATA) {
buf = data->oemdata;
bufsize = data->oemdata_size;
} else {
buf = NULL;
bufsize = 0;
}
return simple_read_from_buffer(buffer, count, ppos, buf, bufsize);
}
static void
salinfo_log_clear_cpu(void *context)
{
struct salinfo_data *data = context;
ia64_sal_clear_state_info(data->type);
}
static int
salinfo_log_clear(struct salinfo_data *data, int cpu)
{
sal_log_record_header_t *rh;
unsigned long flags;
spin_lock_irqsave(&data_saved_lock, flags);
data->state = STATE_NO_DATA;
if (!cpu_isset(cpu, data->cpu_event)) {
spin_unlock_irqrestore(&data_saved_lock, flags);
return 0;
}
cpu_clear(cpu, data->cpu_event);
if (data->saved_num) {
shift1_data_saved(data, data->saved_num - 1);
data->saved_num = 0;
}
spin_unlock_irqrestore(&data_saved_lock, flags);
rh = (sal_log_record_header_t *)(data->log_buffer);
/* Corrected errors have already been cleared from SAL */
if (rh->severity != sal_log_severity_corrected)
call_on_cpu(cpu, salinfo_log_clear_cpu, data);
/* clearing a record may make a new record visible */
salinfo_log_new_read(cpu, data);
if (data->state == STATE_LOG_RECORD) {
spin_lock_irqsave(&data_saved_lock, flags);
cpu_set(cpu, data->cpu_event);
salinfo_work_to_do(data);
spin_unlock_irqrestore(&data_saved_lock, flags);
}
return 0;
}
static ssize_t
salinfo_log_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct inode *inode = file->f_dentry->d_inode;
struct proc_dir_entry *entry = PDE(inode);
struct salinfo_data *data = entry->data;
char cmd[32];
size_t size;
u32 offset;
int cpu;
size = sizeof(cmd);
if (count < size)
size = count;
if (copy_from_user(cmd, buffer, size))
return -EFAULT;
if (sscanf(cmd, "read %d", &cpu) == 1) {
salinfo_log_new_read(cpu, data);
} else if (sscanf(cmd, "clear %d", &cpu) == 1) {
int ret;
if ((ret = salinfo_log_clear(data, cpu)))
count = ret;
} else if (sscanf(cmd, "oemdata %d %d", &cpu, &offset) == 2) {
if (data->state != STATE_LOG_RECORD && data->state != STATE_OEMDATA)
return -EINVAL;
if (offset > data->log_size - sizeof(efi_guid_t))
return -EINVAL;
data->state = STATE_OEMDATA;
if (salinfo_platform_oemdata) {
struct salinfo_platform_oemdata_parms parms = {
.efi_guid = data->log_buffer + offset,
.oemdata = &data->oemdata,
.oemdata_size = &data->oemdata_size
};
call_on_cpu(cpu, salinfo_platform_oemdata_cpu, &parms);
if (parms.ret)
count = parms.ret;
} else
data->oemdata_size = 0;
} else
return -EINVAL;
return count;
}
static struct file_operations salinfo_data_fops = {
.open = salinfo_log_open,
.release = salinfo_log_release,
.read = salinfo_log_read,
.write = salinfo_log_write,
};
#ifdef CONFIG_HOTPLUG_CPU
static int __devinit
salinfo_cpu_callback(struct notifier_block *nb, unsigned long action, void *hcpu)
{
unsigned int i, cpu = (unsigned long)hcpu;
unsigned long flags;
struct salinfo_data *data;
switch (action) {
case CPU_ONLINE:
spin_lock_irqsave(&data_saved_lock, flags);
for (i = 0, data = salinfo_data;
i < ARRAY_SIZE(salinfo_data);
++i, ++data) {
cpu_set(cpu, data->cpu_event);
salinfo_work_to_do(data);
}
spin_unlock_irqrestore(&data_saved_lock, flags);
break;
case CPU_DEAD:
spin_lock_irqsave(&data_saved_lock, flags);
for (i = 0, data = salinfo_data;
i < ARRAY_SIZE(salinfo_data);
++i, ++data) {
struct salinfo_data_saved *data_saved;
int j;
for (j = ARRAY_SIZE(data->data_saved) - 1, data_saved = data->data_saved + j;
j >= 0;
--j, --data_saved) {
if (data_saved->buffer && data_saved->cpu == cpu) {
shift1_data_saved(data, j);
}
}
cpu_clear(cpu, data->cpu_event);
}
spin_unlock_irqrestore(&data_saved_lock, flags);
break;
}
return NOTIFY_OK;
}
static struct notifier_block salinfo_cpu_notifier =
{
.notifier_call = salinfo_cpu_callback,
.priority = 0,
};
#endif /* CONFIG_HOTPLUG_CPU */
static int __init
salinfo_init(void)
{
struct proc_dir_entry *salinfo_dir; /* /proc/sal dir entry */
struct proc_dir_entry **sdir = salinfo_proc_entries; /* keeps track of every entry */
struct proc_dir_entry *dir, *entry;
struct salinfo_data *data;
int i, j;
salinfo_dir = proc_mkdir("sal", NULL);
if (!salinfo_dir)
return 0;
for (i=0; i < NR_SALINFO_ENTRIES; i++) {
/* pass the feature bit in question as misc data */
*sdir++ = create_proc_read_entry (salinfo_entries[i].name, 0, salinfo_dir,
salinfo_read, (void *)salinfo_entries[i].feature);
}
for (i = 0; i < ARRAY_SIZE(salinfo_log_name); i++) {
data = salinfo_data + i;
data->type = i;
init_MUTEX(&data->mutex);
dir = proc_mkdir(salinfo_log_name[i], salinfo_dir);
if (!dir)
continue;
entry = create_proc_entry("event", S_IRUSR, dir);
if (!entry)
continue;
entry->data = data;
entry->proc_fops = &salinfo_event_fops;
*sdir++ = entry;
entry = create_proc_entry("data", S_IRUSR | S_IWUSR, dir);
if (!entry)
continue;
entry->data = data;
entry->proc_fops = &salinfo_data_fops;
*sdir++ = entry;
/* we missed any events before now */
for_each_online_cpu(j)
cpu_set(j, data->cpu_event);
*sdir++ = dir;
}
*sdir++ = salinfo_dir;
init_timer(&salinfo_timer);
salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
salinfo_timer.function = &salinfo_timeout;
add_timer(&salinfo_timer);
register_hotcpu_notifier(&salinfo_cpu_notifier);
return 0;
}
/*
* 'data' contains an integer that corresponds to the feature we're
* testing
*/
static int
salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
len = sprintf(page, (sal_platform_features & (unsigned long)data) ? "1\n" : "0\n");
if (len <= off+count) *eof = 1;
*start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return len;
}
module_init(salinfo_init);