android_kernel_xiaomi_sm7250/drivers/soc/qcom/peripheral-loader.c
Kyle Yan dc880ca423 soc: qcom: pil: Reuse carveout region for mdt header
Currently we allocate a new dma region for our image headers to pass
into TZ for image verification. Instead reuse the previously allocated
region for the main firmware body to store the image header to avoid
having to allocate more memory than needed.

Change-Id: I1e50df2b417d9823c4e75f28134a3f9e078463aa
Signed-off-by: Kyle Yan <kyan@codeaurora.org>
Signed-off-by: Archana Sriram <apsrir@codeaurora.org>
2021-04-28 10:51:50 +05:30

1726 lines
45 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2010-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/firmware.h>
#include <linux/io.h>
#include <linux/elf.h>
#include <linux/mutex.h>
#include <linux/memblock.h>
#include <linux/slab.h>
#include <linux/suspend.h>
#include <linux/rwsem.h>
#include <linux/sysfs.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/list_sort.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <soc/qcom/ramdump.h>
#include <soc/qcom/subsystem_restart.h>
#include <soc/qcom/secure_buffer.h>
#include <linux/soc/qcom/smem.h>
#include <linux/kthread.h>
#include <linux/uaccess.h>
#include <asm/setup.h>
#define CREATE_TRACE_POINTS
#include <trace/events/trace_msm_pil_event.h>
#include "peripheral-loader.h"
#define pil_err(desc, fmt, ...) \
dev_err(desc->dev, "%s: " fmt, desc->name, ##__VA_ARGS__)
#define pil_info(desc, fmt, ...) \
dev_info(desc->dev, "%s: " fmt, desc->name, ##__VA_ARGS__)
#if defined(CONFIG_ARM)
#define pil_memset_io(d, c, count) memset(d, c, count)
#else
#define pil_memset_io(d, c, count) memset_io(d, c, count)
#endif
#define PIL_NUM_DESC 16
#define MAX_LEN 96
#define NUM_OF_ENCRYPTED_KEY 3
#define pil_log(msg, desc) \
do { \
if (pil_ipc_log) \
pil_ipc("[%s]: %s", desc->name, msg); \
else \
trace_pil_event(msg, desc); \
} while (0)
static void __iomem *pil_info_base;
static struct md_global_toc *g_md_toc;
void *pil_ipc_log;
/**
* proxy_timeout - Override for proxy vote timeouts
* -1: Use driver-specified timeout
* 0: Hold proxy votes until shutdown
* >0: Specify a custom timeout in ms
*/
static int proxy_timeout_ms = -1;
module_param(proxy_timeout_ms, int, 0644);
static bool disable_timeouts;
static struct workqueue_struct *pil_wq;
/**
* struct pil_mdt - Representation of <name>.mdt file in memory
* @hdr: ELF32 header
* @phdr: ELF32 program headers
*/
struct pil_mdt {
struct elf32_hdr hdr;
struct elf32_phdr phdr[];
};
/**
* struct pil_seg - memory map representing one segment
* @next: points to next seg mentor NULL if last segment
* @paddr: physical start address of segment
* @sz: size of segment
* @filesz: size of segment on disk
* @num: segment number
* @relocated: true if segment is relocated, false otherwise
*
* Loosely based on an elf program header. Contains all necessary information
* to load and initialize a segment of the image in memory.
*/
struct pil_seg {
phys_addr_t paddr;
unsigned long sz;
unsigned long filesz;
int num;
struct list_head list;
bool relocated;
};
/**
* struct pil_priv - Private state for a pil_desc
* @proxy: work item used to run the proxy unvoting routine
* @ws: wakeup source to prevent suspend during pil_boot
* @wname: name of @ws
* @desc: pointer to pil_desc this is private data for
* @seg: list of segments sorted by physical address
* @entry_addr: physical address where processor starts booting at
* @base_addr: smallest start address among all segments that are relocatable
* @region_start: address where relocatable region starts or lowest address
* for non-relocatable images
* @region_end: address where relocatable region ends or highest address for
* non-relocatable images
* @region: region allocated for relocatable images
* @unvoted_flag: flag to keep track if we have unvoted or not.
*
* This struct contains data for a pil_desc that should not be exposed outside
* of this file. This structure points to the descriptor and the descriptor
* points to this structure so that PIL drivers can't access the private
* data of a descriptor but this file can access both.
*/
struct pil_priv {
struct delayed_work proxy;
struct wakeup_source *ws;
char wname[32];
struct pil_desc *desc;
int num_segs;
struct list_head segs;
phys_addr_t entry_addr;
phys_addr_t base_addr;
phys_addr_t region_start;
phys_addr_t region_end;
void *region;
struct pil_image_info __iomem *info;
int id;
int unvoted_flag;
size_t region_size;
};
/**
* struct aux_minidumpinfo - State maintained for each aux minidump entry dumped
* during SSR
* @region_info_aux: region that contains an array of descriptors, where
* each one describes the base address and size of a segment that should be
* dumped during SSR minidump
* @seg_cnt: the number of such regions
*/
struct aux_minidump_info {
struct md_ss_region __iomem *region_info_aux;
unsigned int seg_cnt;
};
/**
* map_minidump_regions() - map the region containing the segment descriptors
* for an entry in the global minidump table
* @toc: the subsystem table of contents
* @num_segs: the number of segment descriptors in the region defined by the
* subsystem table of contents
*
* Maps the region containing num_segs segment descriptor into the kernel's
* address space.
*/
static struct md_ss_region __iomem *map_minidump_regions(struct md_ss_toc *toc,
int num_segs)
{
u64 region_ptr = (u64)toc->md_ss_smem_regions_baseptr;
void __iomem *segtable_base = ioremap((unsigned long)region_ptr,
num_segs *
sizeof(struct md_ss_region));
struct md_ss_region __iomem *region_info = (struct md_ss_region __iomem
*)segtable_base;
if (!region_info)
return NULL;
pr_debug("Minidump : Segments in minidump 0x%x\n", num_segs);
return region_info;
}
/**
* map_aux_minidump_regions() - map the region containing the segment
* descriptors for a set of entries in the global minidump table
* @desc: descriptor from pil_desc_init()
* @aux_mdump_data: contains an array of pointers to segment descriptor regions
* per auxiliary minidump ID
* @total_aux_segs: value that is incremented to capture the total number of
* segments that are needed to dump all auxiliary regions
*
* Maps the regions of segment descriptors for a set of auxiliary minidump IDs.
*/
static int map_aux_minidump_regions(struct pil_desc *desc,
struct aux_minidump_info *aux_mdump_data,
int *total_aux_segs)
{
unsigned int i;
struct md_ss_toc *toc;
for (i = 0; i < desc->num_aux_minidump_ids; i++) {
toc = desc->aux_minidump[i];
if (toc && (toc->md_ss_toc_init == true) &&
(toc->md_ss_enable_status == MD_SS_ENABLED) &&
(toc->md_ss_smem_regions_baseptr) &&
(toc->encryption_status == MD_SS_ENCR_DONE)) {
aux_mdump_data[i].seg_cnt = toc->ss_region_count;
aux_mdump_data[i].region_info_aux =
map_minidump_regions(desc->aux_minidump[i],
aux_mdump_data[i].seg_cnt);
if (!aux_mdump_data[i].region_info_aux)
return -ENOMEM;
*total_aux_segs += aux_mdump_data[i].seg_cnt;
}
}
return 0;
}
/**
* unmap_aux_minidump_regions() - unmap the regions containing the segment
* descriptors for a set of entries in the global minidump table
* @aux_mdump: contains an array of pointers to segment descriptor regions
* per auxiliary minidump ID
* @num_aux_md_ids: the number of auxiliary minidump IDs
*
* Unmaps the regions of segment descriptors for a set of auxiliary minidump
* IDs.
*/
static void unmap_aux_minidump_regions(struct aux_minidump_info *aux_mdump,
int num_aux_md_ids)
{
unsigned int i = 0;
while (i < num_aux_md_ids && aux_mdump[i].region_info_aux) {
iounmap(aux_mdump[i].region_info_aux);
i++;
}
}
/**
* prepare_minidump_segments() - Fills in the necessary information for the
* ramdump driver to dump a region of memory, described by a segment.
* @rd_segs: segments that will be filled in for ramdump collection
* @region_info: the start of the region that contains the segment descriptors
* @num_segs: the number of segment descriptors in region_info
* @ss_valid_seg_cnt: the number of valid segments for this ramdump. Will be
* decremented if a segment is found to be invalid.
*
* Fills in the necessary information in the ramdump_segment structures to
* describe regions that should be dumped by the ramdump driver.
*/
static unsigned int prepare_minidump_segments(struct ramdump_segment *rd_segs,
struct md_ss_region __iomem *region_info,
int num_segs, int *ss_valid_seg_cnt)
{
void __iomem *offset;
unsigned int i;
unsigned int val_segs = 0;
for (i = 0; i < num_segs; i++) {
memcpy(&offset, &region_info, sizeof(region_info));
offset = offset + sizeof(region_info->name) +
sizeof(region_info->seq_num);
if (__raw_readl(offset) == MD_REGION_VALID) {
memcpy(&rd_segs->name, &region_info,
sizeof(region_info));
offset = offset +
sizeof(region_info->md_valid);
rd_segs->address = __raw_readl(offset);
offset = offset +
sizeof(region_info->region_base_address);
rd_segs->size = __raw_readl(offset);
pr_debug("Minidump : Dumping segment %s with address 0x%lx and size 0x%x\n",
rd_segs->name, rd_segs->address,
(unsigned int)rd_segs->size);
rd_segs++;
val_segs++;
} else {
*ss_valid_seg_cnt--;
}
region_info++;
}
return val_segs;
}
/**
* prepare_aux_minidump_segments() - Fills in the necessary information for the
* ramdump driver to dump a region of memory, described by a segment. This is
* done for a set of auxiliary minidump IDs.
* @rd_segs: segments that will be filled in for ramdump collection
* @aux_mdump: contains an array of pointers to segment descriptor regions per
* auxiliary minidump ID
* @ss_valid_seg_cnt: the number of valid segments for this ramdump. Will be
* decremented if a segment is found to be invalid.
* @num_aux_md_ids: the number of auxiliary minidump IDs
*
* Fills in the necessary information in the ramdump_segment structures to
* describe the regions that should be dumped by the ramdump driver for a set
* of auxiliary minidump IDs.
*/
static void prepare_aux_minidump_segments(struct ramdump_segment *rd_segs,
struct aux_minidump_info *aux_mdump,
int *ss_valid_seg_cnt,
int num_aux_md_ids)
{
unsigned int i;
struct ramdump_segment *s = rd_segs;
unsigned int next_offset = 0;
for (i = 0; i < num_aux_md_ids; i++) {
s = &rd_segs[next_offset];
next_offset = prepare_minidump_segments(s,
aux_mdump[i].region_info_aux,
aux_mdump[i].seg_cnt,
ss_valid_seg_cnt);
}
}
static int pil_do_minidump(struct pil_desc *desc, void *ramdump_dev)
{
struct md_ss_region __iomem *region_info_ss;
struct ramdump_segment *ramdump_segs;
struct pil_priv *priv = desc->priv;
int ss_mdump_seg_cnt_ss = 0, total_segs;
int total_aux_segs = 0;
int ss_valid_seg_cnt;
int ret;
struct aux_minidump_info *aux_minidump_data = NULL;
unsigned int next_offset;
if (!ramdump_dev)
return -ENODEV;
ss_mdump_seg_cnt_ss = desc->minidump_ss->ss_region_count;
region_info_ss = map_minidump_regions(desc->minidump_ss,
ss_mdump_seg_cnt_ss);
if (!region_info_ss)
return -EINVAL;
if (desc->num_aux_minidump_ids > 0) {
aux_minidump_data = kcalloc(desc->num_aux_minidump_ids,
sizeof(*aux_minidump_data),
GFP_KERNEL);
if (!aux_minidump_data) {
ret = -ENOMEM;
goto setup_fail;
}
if (map_aux_minidump_regions(desc, aux_minidump_data,
&total_aux_segs) < 0) {
ret = -ENOMEM;
goto mapping_fail;
}
}
total_segs = ss_mdump_seg_cnt_ss + total_aux_segs;
ramdump_segs = kcalloc(total_segs,
sizeof(*ramdump_segs), GFP_KERNEL);
if (!ramdump_segs) {
ret = -ENOMEM;
goto mapping_fail;
}
if (desc->subsys_vmid > 0)
ret = pil_assign_mem_to_linux(desc, priv->region_start,
(priv->region_end - priv->region_start));
ss_valid_seg_cnt = total_segs;
next_offset = prepare_minidump_segments(ramdump_segs, region_info_ss,
ss_mdump_seg_cnt_ss,
&ss_valid_seg_cnt);
if (desc->num_aux_minidump_ids > 0)
prepare_aux_minidump_segments(&ramdump_segs[next_offset],
aux_minidump_data,
&ss_valid_seg_cnt,
desc->num_aux_minidump_ids);
if (desc->minidump_as_elf32)
ret = do_minidump_elf32(ramdump_dev, ramdump_segs,
ss_valid_seg_cnt);
else
ret = do_minidump(ramdump_dev, ramdump_segs, ss_valid_seg_cnt);
if (ret)
pil_err(desc, "%s: Minidump collection failed for subsys %s rc:%d\n",
__func__, desc->name, ret);
if (desc->subsys_vmid > 0)
ret = pil_assign_mem_to_subsys(desc, priv->region_start,
(priv->region_end - priv->region_start));
kfree(ramdump_segs);
mapping_fail:
unmap_aux_minidump_regions(aux_minidump_data,
desc->num_aux_minidump_ids);
kfree(aux_minidump_data);
setup_fail:
iounmap(region_info_ss);
return ret;
}
/**
* print_aux_minidump_tocs() - Print the ToC for an auxiliary minidump entry
* @desc: PIL descriptor for the subsystem for which minidump is collected
*
* Prints out the table of contents(ToC) for all of the auxiliary
* minidump entries for a subsystem.
*/
static void print_aux_minidump_tocs(struct pil_desc *desc)
{
int i;
struct md_ss_toc *toc;
for (i = 0; i < desc->num_aux_minidump_ids; i++) {
toc = desc->aux_minidump[i];
pr_debug("Minidump : md_aux_toc->toc_init 0x%x\n",
(unsigned int)toc->md_ss_toc_init);
pr_debug("Minidump : md_aux_toc->enable_status 0x%x\n",
(unsigned int)toc->md_ss_enable_status);
pr_debug("Minidump : md_aux_toc->encryption_status 0x%x\n",
(unsigned int)toc->encryption_status);
pr_debug("Minidump : md_aux_toc->ss_region_count 0x%x\n",
(unsigned int)toc->ss_region_count);
pr_debug("Minidump : md_aux_toc->smem_regions_baseptr 0x%x\n",
(unsigned int)toc->md_ss_smem_regions_baseptr);
}
}
/**
* pil_do_ramdump() - Ramdump an image
* @desc: descriptor from pil_desc_init()
* @ramdump_dev: ramdump device returned from create_ramdump_device()
*
* Calls the ramdump API with a list of segments generated from the addresses
* that the descriptor corresponds to.
*/
int pil_do_ramdump(struct pil_desc *desc,
void *ramdump_dev, void *minidump_dev)
{
struct ramdump_segment *ramdump_segs, *s;
struct pil_priv *priv = desc->priv;
struct pil_seg *seg;
int count = 0, ret;
if (desc->minidump_ss) {
pr_debug("Minidump : md_ss_toc->md_ss_toc_init is 0x%x\n",
(unsigned int)desc->minidump_ss->md_ss_toc_init);
pr_debug("Minidump : md_ss_toc->md_ss_enable_status is 0x%x\n",
(unsigned int)desc->minidump_ss->md_ss_enable_status);
pr_debug("Minidump : md_ss_toc->encryption_status is 0x%x\n",
(unsigned int)desc->minidump_ss->encryption_status);
pr_debug("Minidump : md_ss_toc->ss_region_count is 0x%x\n",
(unsigned int)desc->minidump_ss->ss_region_count);
pr_debug("Minidump : md_ss_toc->md_ss_smem_regions_baseptr is 0x%x\n",
(unsigned int)
desc->minidump_ss->md_ss_smem_regions_baseptr);
print_aux_minidump_tocs(desc);
/**
* Collect minidump if SS ToC is valid and segment table
* is initialized in memory and encryption status is set.
*/
if ((desc->minidump_ss->md_ss_smem_regions_baseptr != 0) &&
(desc->minidump_ss->md_ss_toc_init == true) &&
(desc->minidump_ss->md_ss_enable_status ==
MD_SS_ENABLED)) {
if (desc->minidump_ss->encryption_status ==
MD_SS_ENCR_DONE) {
pr_debug("Dumping Minidump for %s\n",
desc->name);
return pil_do_minidump(desc, minidump_dev);
}
pr_debug("Minidump aborted for %s\n", desc->name);
return -EINVAL;
}
}
pr_debug("Continuing with full SSR dump for %s\n", desc->name);
list_for_each_entry(seg, &priv->segs, list)
count++;
ramdump_segs = kcalloc(count, sizeof(*ramdump_segs), GFP_KERNEL);
if (!ramdump_segs)
return -ENOMEM;
if (desc->subsys_vmid > 0)
ret = pil_assign_mem_to_linux(desc, priv->region_start,
(priv->region_end - priv->region_start));
s = ramdump_segs;
list_for_each_entry(seg, &priv->segs, list) {
s->address = seg->paddr;
s->size = seg->sz;
s++;
}
ret = do_elf_ramdump(ramdump_dev, ramdump_segs, count);
kfree(ramdump_segs);
if (ret)
pil_err(desc, "%s: Ramdump collection failed for subsys %s rc:%d\n",
__func__, desc->name, ret);
if (desc->subsys_vmid > 0)
ret = pil_assign_mem_to_subsys(desc, priv->region_start,
(priv->region_end - priv->region_start));
return ret;
}
EXPORT_SYMBOL(pil_do_ramdump);
int pil_assign_mem_to_subsys(struct pil_desc *desc, phys_addr_t addr,
size_t size)
{
int ret;
int srcVM[1] = {VMID_HLOS};
int destVM[1] = {desc->subsys_vmid};
int destVMperm[1] = {PERM_READ | PERM_WRITE};
ret = hyp_assign_phys(addr, size, srcVM, 1, destVM, destVMperm, 1);
if (ret)
pil_err(desc, "%s: failed for %pa address of size %zx - subsys VMid %d rc:%d\n",
__func__, &addr, size, desc->subsys_vmid, ret);
return ret;
}
EXPORT_SYMBOL(pil_assign_mem_to_subsys);
int pil_assign_mem_to_linux(struct pil_desc *desc, phys_addr_t addr,
size_t size)
{
int ret;
int srcVM[1] = {desc->subsys_vmid};
int destVM[1] = {VMID_HLOS};
int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC};
ret = hyp_assign_phys(addr, size, srcVM, 1, destVM, destVMperm, 1);
if (ret)
panic("%s: failed for %pa address of size %zx - subsys VMid %d rc:%d\n",
__func__, &addr, size, desc->subsys_vmid, ret);
return ret;
}
EXPORT_SYMBOL(pil_assign_mem_to_linux);
int pil_assign_mem_to_subsys_and_linux(struct pil_desc *desc,
phys_addr_t addr, size_t size)
{
int ret;
int srcVM[1] = {VMID_HLOS};
int destVM[2] = {VMID_HLOS, desc->subsys_vmid};
int destVMperm[2] = {PERM_READ | PERM_WRITE, PERM_READ | PERM_WRITE};
ret = hyp_assign_phys(addr, size, srcVM, 1, destVM, destVMperm, 2);
if (ret)
pil_err(desc, "%s: failed for %pa address of size %zx - subsys VMid %d rc:%d\n",
__func__, &addr, size, desc->subsys_vmid, ret);
return ret;
}
EXPORT_SYMBOL(pil_assign_mem_to_subsys_and_linux);
int pil_reclaim_mem(struct pil_desc *desc, phys_addr_t addr, size_t size,
int VMid)
{
int ret;
int srcVM[2] = {VMID_HLOS, desc->subsys_vmid};
int destVM[1] = {VMid};
int destVMperm[1] = {PERM_READ | PERM_WRITE};
if (VMid == VMID_HLOS)
destVMperm[0] = PERM_READ | PERM_WRITE | PERM_EXEC;
ret = hyp_assign_phys(addr, size, srcVM, 2, destVM, destVMperm, 1);
if (ret)
panic("%s: failed for %pa address of size %zx - subsys VMid %d. Fatal error.\n",
__func__, &addr, size, desc->subsys_vmid);
return ret;
}
EXPORT_SYMBOL(pil_reclaim_mem);
/**
* pil_get_entry_addr() - Retrieve the entry address of a peripheral image
* @desc: descriptor from pil_desc_init()
*
* Returns the physical address where the image boots at or 0 if unknown.
*/
phys_addr_t pil_get_entry_addr(struct pil_desc *desc)
{
return desc->priv ? desc->priv->entry_addr : 0;
}
EXPORT_SYMBOL(pil_get_entry_addr);
static void __pil_proxy_unvote(struct pil_priv *priv)
{
struct pil_desc *desc = priv->desc;
desc->ops->proxy_unvote(desc);
notify_proxy_unvote(desc->dev);
__pm_relax(priv->ws);
module_put(desc->owner);
}
static void pil_proxy_unvote_work(struct work_struct *work)
{
struct delayed_work *delayed = to_delayed_work(work);
struct pil_priv *priv = container_of(delayed, struct pil_priv, proxy);
__pil_proxy_unvote(priv);
}
static int pil_proxy_vote(struct pil_desc *desc)
{
int ret = 0;
struct pil_priv *priv = desc->priv;
if (desc->ops->proxy_vote) {
__pm_stay_awake(priv->ws);
ret = desc->ops->proxy_vote(desc);
if (ret)
__pm_relax(priv->ws);
}
if (desc->proxy_unvote_irq)
enable_irq(desc->proxy_unvote_irq);
notify_proxy_vote(desc->dev);
return ret;
}
static void pil_proxy_unvote(struct pil_desc *desc, int immediate)
{
struct pil_priv *priv = desc->priv;
unsigned long timeout;
if (proxy_timeout_ms == 0 && !immediate)
return;
else if (proxy_timeout_ms > 0)
timeout = proxy_timeout_ms;
else
timeout = desc->proxy_timeout;
if (desc->ops->proxy_unvote) {
if (WARN_ON(!try_module_get(desc->owner)))
return;
if (immediate)
timeout = 0;
if (!desc->proxy_unvote_irq || immediate)
schedule_delayed_work(&priv->proxy,
msecs_to_jiffies(timeout));
}
}
static irqreturn_t proxy_unvote_intr_handler(int irq, void *dev_id)
{
struct pil_desc *desc = dev_id;
struct pil_priv *priv = desc->priv;
pil_info(desc, "Power/Clock ready interrupt received\n");
if (!desc->priv->unvoted_flag) {
desc->priv->unvoted_flag = 1;
__pil_proxy_unvote(priv);
}
return IRQ_HANDLED;
}
static bool segment_is_relocatable(const struct elf32_phdr *p)
{
return !!(p->p_flags & BIT(27));
}
static phys_addr_t pil_reloc(const struct pil_priv *priv, phys_addr_t addr)
{
return addr - priv->base_addr + priv->region_start;
}
static struct pil_seg *pil_init_seg(const struct pil_desc *desc,
const struct elf32_phdr *phdr, int num)
{
bool reloc = segment_is_relocatable(phdr);
const struct pil_priv *priv = desc->priv;
struct pil_seg *seg;
if (!reloc && memblock_overlaps_memory(phdr->p_paddr, phdr->p_memsz)) {
pil_err(desc, "Segment not relocatable,kernel memory would be overwritten[%#08lx, %#08lx)\n",
(unsigned long)phdr->p_paddr,
(unsigned long)(phdr->p_paddr + phdr->p_memsz));
return ERR_PTR(-EPERM);
}
if (phdr->p_filesz > phdr->p_memsz) {
pil_err(desc, "Segment %d: file size (%u) is greater than mem size (%u).\n",
num, phdr->p_filesz, phdr->p_memsz);
return ERR_PTR(-EINVAL);
}
seg = kmalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
return ERR_PTR(-ENOMEM);
seg->num = num;
seg->paddr = reloc ? pil_reloc(priv, phdr->p_paddr) : phdr->p_paddr;
seg->filesz = phdr->p_filesz;
seg->sz = phdr->p_memsz;
seg->relocated = reloc;
INIT_LIST_HEAD(&seg->list);
return seg;
}
#define segment_is_hash(flag) (((flag) & (0x7 << 24)) == (0x2 << 24))
static int segment_is_loadable(const struct elf32_phdr *p)
{
return (p->p_type == PT_LOAD) && !segment_is_hash(p->p_flags) &&
p->p_memsz;
}
static void pil_dump_segs(const struct pil_priv *priv)
{
struct pil_seg *seg;
phys_addr_t seg_h_paddr;
list_for_each_entry(seg, &priv->segs, list) {
seg_h_paddr = seg->paddr + seg->sz;
pil_info(priv->desc, "%d: %pa %pa\n", seg->num,
&seg->paddr, &seg_h_paddr);
}
}
/*
* Ensure the entry address lies within the image limits and if the image is
* relocatable ensure it lies within a relocatable segment.
*/
static int pil_init_entry_addr(struct pil_priv *priv, const struct pil_mdt *mdt)
{
struct pil_seg *seg;
phys_addr_t entry = mdt->hdr.e_entry;
bool image_relocated = priv->region;
if (image_relocated)
entry = pil_reloc(priv, entry);
priv->entry_addr = entry;
if (priv->desc->flags & PIL_SKIP_ENTRY_CHECK)
return 0;
list_for_each_entry(seg, &priv->segs, list) {
if (entry >= seg->paddr && entry < seg->paddr + seg->sz) {
if (!image_relocated)
return 0;
else if (seg->relocated)
return 0;
}
}
pil_err(priv->desc, "entry address %pa not within range\n", &entry);
pil_dump_segs(priv);
return -EADDRNOTAVAIL;
}
static int pil_alloc_region(struct pil_priv *priv, phys_addr_t min_addr,
phys_addr_t max_addr, size_t align,
size_t mdt_size)
{
void *region;
size_t size = max_addr - min_addr;
size_t aligned_size = max(size, mdt_size);
/* Don't reallocate due to fragmentation concerns, just sanity check */
if (priv->region) {
if (WARN(priv->region_end - priv->region_start < size,
"Can't reuse PIL memory, too small\n"))
return -ENOMEM;
return 0;
}
if (align >= SZ_4M)
aligned_size = ALIGN(size, SZ_4M);
else if (align >= SZ_1M)
aligned_size = ALIGN(size, SZ_1M);
else
aligned_size = ALIGN(size, SZ_4K);
priv->desc->attrs = 0;
priv->desc->attrs |= DMA_ATTR_SKIP_ZEROING | DMA_ATTR_NO_KERNEL_MAPPING;
region = dma_alloc_attrs(priv->desc->dev, aligned_size,
&priv->region_start, GFP_KERNEL,
priv->desc->attrs);
if (region == NULL) {
pil_err(priv->desc, "Failed to allocate relocatable region of size %zx\n",
size);
priv->region_start = 0;
priv->region_end = 0;
return -ENOMEM;
}
priv->region = region;
priv->region_end = priv->region_start + size;
priv->base_addr = min_addr;
priv->region_size = aligned_size;
return 0;
}
static int pil_setup_region(struct pil_priv *priv, const struct pil_mdt *mdt,
size_t mdt_size)
{
const struct elf32_phdr *phdr;
phys_addr_t min_addr_r, min_addr_n, max_addr_r, max_addr_n, start, end;
size_t align = 0;
int i, ret = 0;
bool relocatable = false;
min_addr_n = min_addr_r = (phys_addr_t)ULLONG_MAX;
max_addr_n = max_addr_r = 0;
/* Find the image limits */
for (i = 0; i < mdt->hdr.e_phnum; i++) {
phdr = &mdt->phdr[i];
if (!segment_is_loadable(phdr))
continue;
start = phdr->p_paddr;
end = start + phdr->p_memsz;
if (segment_is_relocatable(phdr)) {
min_addr_r = min(min_addr_r, start);
max_addr_r = max(max_addr_r, end);
/*
* Lowest relocatable segment dictates alignment of
* relocatable region
*/
if (min_addr_r == start)
align = phdr->p_align;
relocatable = true;
} else {
min_addr_n = min(min_addr_n, start);
max_addr_n = max(max_addr_n, end);
}
}
/*
* Align the max address to the next 4K boundary to satisfy iommus and
* XPUs that operate on 4K chunks.
*/
max_addr_n = ALIGN(max_addr_n, SZ_4K);
max_addr_r = ALIGN(max_addr_r, SZ_4K);
if (relocatable) {
ret = pil_alloc_region(priv, min_addr_r, max_addr_r, align,
mdt_size);
} else {
priv->region_start = min_addr_n;
priv->region_end = max_addr_n;
priv->base_addr = min_addr_n;
}
if (priv->info) {
__iowrite32_copy(&priv->info->start, &priv->region_start,
sizeof(priv->region_start) / 4);
writel_relaxed(priv->region_end - priv->region_start,
&priv->info->size);
}
return ret;
}
static int pil_cmp_seg(void *priv, struct list_head *a, struct list_head *b)
{
int ret = 0;
struct pil_seg *seg_a = list_entry(a, struct pil_seg, list);
struct pil_seg *seg_b = list_entry(b, struct pil_seg, list);
if (seg_a->paddr < seg_b->paddr)
ret = -1;
else if (seg_a->paddr > seg_b->paddr)
ret = 1;
return ret;
}
static int pil_init_mmap(struct pil_desc *desc, const struct pil_mdt *mdt,
size_t mdt_size)
{
struct pil_priv *priv = desc->priv;
const struct elf32_phdr *phdr;
struct pil_seg *seg;
int i, ret;
ret = pil_setup_region(priv, mdt, mdt_size);
if (ret)
return ret;
pil_info(desc, "loading from %pa to %pa\n", &priv->region_start,
&priv->region_end);
priv->num_segs = 0;
for (i = 0; i < mdt->hdr.e_phnum; i++) {
phdr = &mdt->phdr[i];
if (!segment_is_loadable(phdr))
continue;
seg = pil_init_seg(desc, phdr, i);
if (IS_ERR(seg))
return PTR_ERR(seg);
list_add_tail(&seg->list, &priv->segs);
priv->num_segs++;
}
list_sort(NULL, &priv->segs, pil_cmp_seg);
return pil_init_entry_addr(priv, mdt);
}
struct pil_map_fw_info {
void *region;
unsigned long attrs;
phys_addr_t base_addr;
struct device *dev;
};
static void pil_release_mmap(struct pil_desc *desc)
{
struct pil_priv *priv = desc->priv;
struct pil_seg *p, *tmp;
u64 zero = 0ULL;
if (priv->info) {
__iowrite32_copy(&priv->info->start, &zero,
sizeof(zero) / 4);
writel_relaxed(0, &priv->info->size);
}
list_for_each_entry_safe(p, tmp, &priv->segs, list) {
list_del(&p->list);
kfree(p);
}
}
static void pil_clear_segment(struct pil_desc *desc)
{
struct pil_priv *priv = desc->priv;
u8 __iomem *buf;
struct pil_map_fw_info map_fw_info = {
.attrs = desc->attrs,
.region = priv->region,
.base_addr = priv->region_start,
.dev = desc->dev,
};
void *map_data = desc->map_data ? desc->map_data : &map_fw_info;
/* Clear memory so that unauthorized ELF code is not left behind */
buf = desc->map_fw_mem(priv->region_start, (priv->region_end -
priv->region_start), map_data);
if (!buf) {
pil_err(desc, "Failed to map memory\n");
return;
}
pil_memset_io(buf, 0, (priv->region_end - priv->region_start));
desc->unmap_fw_mem(buf, (priv->region_end - priv->region_start),
map_data);
}
#define IOMAP_SIZE SZ_1M
static void *map_fw_mem(phys_addr_t paddr, size_t size, void *data)
{
struct pil_map_fw_info *info = data;
return dma_remap(info->dev, info->region, paddr, size,
info->attrs);
}
static void unmap_fw_mem(void *vaddr, size_t size, void *data)
{
struct pil_map_fw_info *info = data;
dma_unremap(info->dev, vaddr, size);
}
static int pil_load_seg(struct pil_desc *desc, struct pil_seg *seg)
{
int ret = 0, count;
phys_addr_t paddr;
char fw_name[30];
int num = seg->num;
const struct firmware *fw = NULL;
void __iomem *firmware_buf;
struct pil_map_fw_info map_fw_info = {
.attrs = desc->attrs,
.region = desc->priv->region,
.base_addr = desc->priv->region_start,
.dev = desc->dev,
};
void *map_data = desc->map_data ? desc->map_data : &map_fw_info;
if (seg->filesz) {
snprintf(fw_name, ARRAY_SIZE(fw_name), "%s.b%02d",
desc->fw_name, num);
firmware_buf = desc->map_fw_mem(seg->paddr, seg->filesz,
map_data);
if (!firmware_buf) {
pil_err(desc, "Failed to map memory for firmware buffer\n");
return -ENOMEM;
}
ret = request_firmware_into_buf(&fw, fw_name, desc->dev,
firmware_buf, seg->filesz);
desc->unmap_fw_mem(firmware_buf, seg->filesz, map_data);
if (ret) {
pil_err(desc, "Failed to locate blob %s or blob is too big(rc:%d)\n",
fw_name, ret);
return ret;
}
if (fw->size != seg->filesz) {
pil_err(desc, "Blob size %u doesn't match %lu\n",
ret, seg->filesz);
release_firmware(fw);
return -EPERM;
}
release_firmware(fw);
}
/* Zero out trailing memory */
paddr = seg->paddr + seg->filesz;
count = seg->sz - seg->filesz;
while (count > 0) {
int size;
u8 __iomem *buf;
size = min_t(size_t, IOMAP_SIZE, count);
buf = desc->map_fw_mem(paddr, size, map_data);
if (!buf) {
pil_err(desc, "Failed to map memory\n");
return -ENOMEM;
}
pil_memset_io(buf, 0, size);
desc->unmap_fw_mem(buf, size, map_data);
count -= size;
paddr += size;
}
if (desc->ops->verify_blob) {
ret = desc->ops->verify_blob(desc, seg->paddr, seg->sz);
if (ret)
pil_err(desc, "Blob%u failed verification(rc:%d)\n",
num, ret);
}
return ret;
}
static int pil_parse_devicetree(struct pil_desc *desc)
{
struct device_node *ofnode = desc->dev->of_node;
int clk_ready = 0;
if (!ofnode)
return -EINVAL;
if (of_property_read_u32(ofnode, "qcom,mem-protect-id",
&desc->subsys_vmid))
pr_debug("Unable to read the addr-protect-id for %s\n",
desc->name);
if (desc->ops->proxy_unvote &&
of_property_match_string(ofnode, "interrupt-names",
"qcom,proxy-unvote") >= 0) {
clk_ready = of_irq_get_byname(ofnode,
"qcom,proxy-unvote");
if (clk_ready < 0) {
dev_dbg(desc->dev,
"[%s]: Error getting proxy unvoting irq\n",
desc->name);
return clk_ready;
}
}
desc->proxy_unvote_irq = clk_ready;
return 0;
}
static int pil_notify_aop(struct pil_desc *desc, char *status)
{
struct qmp_pkt pkt;
char mbox_msg[MAX_LEN];
if (!desc->signal_aop)
return 0;
snprintf(mbox_msg, MAX_LEN,
"{class: image, res: load_state, name: %s, val: %s}",
desc->name, status);
pkt.size = MAX_LEN;
pkt.data = mbox_msg;
return mbox_send_message(desc->mbox, &pkt);
}
/* Synchronize request_firmware() with suspend */
static DECLARE_RWSEM(pil_pm_rwsem);
struct pil_seg_data {
struct pil_desc *desc;
struct pil_seg *seg;
struct work_struct load_seg_work;
int retval;
};
static void pil_load_seg_work_fn(struct work_struct *work)
{
struct pil_seg_data *pil_seg_data = container_of(work,
struct pil_seg_data,
load_seg_work);
struct pil_desc *desc = pil_seg_data->desc;
struct pil_seg *seg = pil_seg_data->seg;
pil_seg_data->retval = pil_load_seg(desc, seg);
}
static int pil_load_segs(struct pil_desc *desc)
{
int ret = 0;
int seg_id = 0;
struct pil_priv *priv = desc->priv;
struct pil_seg_data *pil_seg_data;
struct pil_seg *seg;
unsigned long *err_map;
err_map = kcalloc(BITS_TO_LONGS(priv->num_segs), sizeof(*err_map),
GFP_KERNEL);
if (!err_map)
return -ENOMEM;
pil_seg_data = kcalloc(priv->num_segs, sizeof(*pil_seg_data),
GFP_KERNEL);
if (!pil_seg_data) {
ret = -ENOMEM;
goto out;
}
/* Initialize and spawn a thread for each segment */
list_for_each_entry(seg, &desc->priv->segs, list) {
pil_seg_data[seg_id].desc = desc;
pil_seg_data[seg_id].seg = seg;
INIT_WORK(&pil_seg_data[seg_id].load_seg_work,
pil_load_seg_work_fn);
queue_work(pil_wq, &pil_seg_data[seg_id].load_seg_work);
seg_id++;
}
bitmap_zero(err_map, priv->num_segs);
/* Wait for the parallel loads to finish */
seg_id = 0;
list_for_each_entry(seg, &desc->priv->segs, list) {
flush_work(&pil_seg_data[seg_id].load_seg_work);
/* Don't exit if one of the thread fails. Wait for others to
* complete. Bitmap the return codes we get from the threads.
*/
if (pil_seg_data[seg_id].retval) {
pil_err(desc,
"Failed to load the segment[%d]. ret = %d\n",
seg_id, pil_seg_data[seg_id].retval);
__set_bit(seg_id, err_map);
}
seg_id++;
}
kfree(pil_seg_data);
/* Each segment can fail due to different reason. Send a generic err */
if (!bitmap_empty(err_map, priv->num_segs))
ret = -EFAULT;
out:
kfree(err_map);
return ret;
}
/**
* pil_boot() - Load a peripheral image into memory and boot it
* @desc: descriptor from pil_desc_init()
*
* Returns 0 on success or -ERROR on failure.
*/
int pil_boot(struct pil_desc *desc)
{
int ret;
char fw_name[30];
struct pil_seg *seg;
const struct pil_mdt *mdt;
const struct elf32_hdr *ehdr;
const struct firmware *fw;
struct pil_priv *priv = desc->priv;
bool mem_protect = false;
bool hyp_assign = false;
ret = pil_notify_aop(desc, "on");
if (ret < 0) {
pil_err(desc, "Failed to send ON message to AOP rc:%d\n", ret);
return ret;
}
if (desc->shutdown_fail)
pil_err(desc, "Subsystem shutdown failed previously!\n");
/* Reinitialize for new image */
pil_release_mmap(desc);
down_read(&pil_pm_rwsem);
snprintf(fw_name, sizeof(fw_name), "%s.mdt", desc->fw_name);
ret = request_firmware(&fw, fw_name, desc->dev);
if (ret) {
pil_err(desc, "Failed to locate %s(rc:%d)\n", fw_name, ret);
goto out;
}
if (fw->size < sizeof(*ehdr)) {
pil_err(desc, "Not big enough to be an elf header\n");
ret = -EIO;
goto release_fw;
}
mdt = (const struct pil_mdt *)fw->data;
ehdr = &mdt->hdr;
if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
pil_err(desc, "Not an elf header\n");
ret = -EIO;
goto release_fw;
}
if (ehdr->e_phnum == 0) {
pil_err(desc, "No loadable segments\n");
ret = -EIO;
goto release_fw;
}
if (sizeof(struct elf32_phdr) * ehdr->e_phnum +
sizeof(struct elf32_hdr) > fw->size) {
pil_err(desc, "Program headers not within mdt\n");
ret = -EIO;
goto release_fw;
}
ret = pil_init_mmap(desc, mdt, fw->size);
if (ret)
goto release_fw;
desc->priv->unvoted_flag = 0;
ret = pil_proxy_vote(desc);
if (ret) {
pil_err(desc, "Failed to proxy vote(rc:%d)\n", ret);
goto release_fw;
}
pil_log("before_init_image", desc);
if (desc->ops->init_image)
ret = desc->ops->init_image(desc, fw->data, fw->size,
priv->region_start, priv->region);
if (ret) {
pil_err(desc, "Initializing image failed(rc:%d)\n", ret);
goto err_boot;
}
pil_log("before_mem_setup", desc);
if (desc->ops->mem_setup)
ret = desc->ops->mem_setup(desc, priv->region_start,
priv->region_end - priv->region_start);
if (ret) {
pil_err(desc, "Memory setup error(rc:%d)\n", ret);
goto err_deinit_image;
}
if (desc->subsys_vmid > 0) {
/**
* In case of modem ssr, we need to assign memory back to linux.
* This is not true after cold boot since linux already owns it.
* Also for secure boot devices, modem memory has to be released
* after MBA is booted
*/
pil_log("before_assign_mem", desc);
if (desc->modem_ssr) {
ret = pil_assign_mem_to_linux(desc, priv->region_start,
(priv->region_end - priv->region_start));
if (ret)
pil_err(desc, "Failed to assign to linux, ret- %d\n",
ret);
}
ret = pil_assign_mem_to_subsys_and_linux(desc,
priv->region_start,
(priv->region_end - priv->region_start));
if (ret) {
pil_err(desc, "Failed to assign memory, ret - %d\n",
ret);
goto err_deinit_image;
}
hyp_assign = true;
}
pil_log("before_load_seg", desc);
/**
* Fallback to serial loading of blobs if the
* workqueue creatation failed during module init.
*/
if (pil_wq && !(desc->sequential_loading)) {
ret = pil_load_segs(desc);
if (ret)
goto err_deinit_image;
} else {
list_for_each_entry(seg, &desc->priv->segs, list) {
ret = pil_load_seg(desc, seg);
if (ret)
goto err_deinit_image;
}
}
if (desc->subsys_vmid > 0) {
pil_log("before_reclaim_mem", desc);
ret = pil_reclaim_mem(desc, priv->region_start,
(priv->region_end - priv->region_start),
desc->subsys_vmid);
if (ret) {
pil_err(desc, "Failed to assign %s memory, ret - %d\n",
desc->name, ret);
goto err_deinit_image;
}
hyp_assign = false;
}
pil_log("before_auth_reset", desc);
notify_before_auth_and_reset(desc->dev);
ret = desc->ops->auth_and_reset(desc);
if (ret) {
pil_err(desc, "Failed to bring out of reset(rc:%d)\n", ret);
goto err_auth_and_reset;
}
pil_log("reset_done", desc);
pil_info(desc, "Brought out of reset\n");
desc->modem_ssr = false;
err_auth_and_reset:
if (ret && desc->subsys_vmid > 0) {
pil_assign_mem_to_linux(desc, priv->region_start,
(priv->region_end - priv->region_start));
mem_protect = true;
}
err_deinit_image:
if (ret && desc->ops->deinit_image)
desc->ops->deinit_image(desc);
err_boot:
if (ret && desc->proxy_unvote_irq)
disable_irq(desc->proxy_unvote_irq);
pil_proxy_unvote(desc, ret);
release_fw:
release_firmware(fw);
out:
up_read(&pil_pm_rwsem);
if (ret) {
if (priv->region) {
if (desc->subsys_vmid > 0 && !mem_protect &&
hyp_assign) {
pil_reclaim_mem(desc, priv->region_start,
(priv->region_end -
priv->region_start),
VMID_HLOS);
}
if (desc->clear_fw_region && priv->region_start)
pil_clear_segment(desc);
dma_free_attrs(desc->dev, priv->region_size,
priv->region, priv->region_start,
desc->attrs);
priv->region = NULL;
}
pil_release_mmap(desc);
pil_notify_aop(desc, "off");
}
return ret;
}
EXPORT_SYMBOL(pil_boot);
/**
* pil_shutdown() - Shutdown a peripheral
* @desc: descriptor from pil_desc_init()
*/
void pil_shutdown(struct pil_desc *desc)
{
int ret;
struct pil_priv *priv = desc->priv;
if (desc->ops->shutdown) {
if (desc->ops->shutdown(desc))
desc->shutdown_fail = true;
else
desc->shutdown_fail = false;
}
if (desc->proxy_unvote_irq) {
disable_irq(desc->proxy_unvote_irq);
if (!desc->priv->unvoted_flag)
pil_proxy_unvote(desc, 1);
} else if (!proxy_timeout_ms)
pil_proxy_unvote(desc, 1);
else
flush_delayed_work(&priv->proxy);
ret = pil_notify_aop(desc, "off");
if (ret < 0)
pr_warn("pil: failed to send OFF message to AOP rc:%d\n", ret);
desc->modem_ssr = true;
}
EXPORT_SYMBOL(pil_shutdown);
/**
* pil_free_memory() - Free memory resources associated with a peripheral
* @desc: descriptor from pil_desc_init()
*/
void pil_free_memory(struct pil_desc *desc)
{
struct pil_priv *priv = desc->priv;
if (priv->region) {
if (desc->subsys_vmid > 0)
pil_assign_mem_to_linux(desc, priv->region_start,
(priv->region_end - priv->region_start));
dma_free_attrs(desc->dev, priv->region_size,
priv->region, priv->region_start, desc->attrs);
priv->region = NULL;
}
}
EXPORT_SYMBOL(pil_free_memory);
static DEFINE_IDA(pil_ida);
bool is_timeout_disabled(void)
{
return disable_timeouts;
}
static int collect_aux_minidump_ids(struct pil_desc *desc)
{
u32 id;
const __be32 *p;
struct property *prop;
unsigned int i = 0;
void *aux_toc_addr;
struct device_node *node = desc->dev->of_node;
int num_ids = of_property_count_u32_elems(node,
"qcom,aux-minidump-ids");
if (num_ids > 0) {
desc->num_aux_minidump_ids = num_ids;
desc->aux_minidump_ids = kmalloc_array(num_ids,
sizeof(*desc->aux_minidump_ids),
GFP_KERNEL);
if (!desc->aux_minidump_ids)
return -ENOMEM;
desc->aux_minidump = kmalloc_array(num_ids,
sizeof(*desc->aux_minidump),
GFP_KERNEL);
if (!desc->aux_minidump) {
kfree(desc->aux_minidump_ids);
desc->aux_minidump_ids = NULL;
return -ENOMEM;
}
of_property_for_each_u32(node, "qcom,aux-minidump-ids", prop,
p, id) {
desc->aux_minidump_ids[i] = id;
aux_toc_addr = &g_md_toc->md_ss_toc[id];
pr_debug("Minidump: aux_toc_addr is %pa and id: %d\n",
&aux_toc_addr, id);
memcpy(&desc->aux_minidump[i], &aux_toc_addr,
sizeof(aux_toc_addr));
i++;
}
}
return 0;
}
/**
* pil_desc_init() - Initialize a pil descriptor
* @desc: descriptor to initialize
*
* Initialize a pil descriptor for use by other pil functions. This function
* must be called before calling pil_boot() or pil_shutdown().
*
* Returns 0 for success and -ERROR on failure.
*/
int pil_desc_init(struct pil_desc *desc)
{
struct pil_priv *priv;
void __iomem *addr;
void *ss_toc_addr;
int ret;
char buf[sizeof(priv->info->name)];
struct device_node *ofnode = desc->dev->of_node;
if (WARN(desc->ops->proxy_unvote && !desc->ops->proxy_vote,
"Invalid proxy voting. Ignoring\n"))
((struct pil_reset_ops *)desc->ops)->proxy_unvote = NULL;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
desc->priv = priv;
priv->desc = desc;
priv->id = ret = ida_simple_get(&pil_ida, 0, PIL_NUM_DESC, GFP_KERNEL);
if (priv->id < 0)
goto err;
if (pil_info_base) {
addr = pil_info_base + sizeof(struct pil_image_info) * priv->id;
priv->info = (struct pil_image_info __iomem *)addr;
strlcpy(buf, desc->name, sizeof(buf));
__iowrite32_copy(priv->info->name, buf, sizeof(buf) / 4);
}
if (of_property_read_u32(ofnode, "qcom,minidump-id",
&desc->minidump_id))
pr_err("minidump-id not found for %s\n", desc->name);
else {
if (g_md_toc && g_md_toc->md_toc_init == true) {
ss_toc_addr = &g_md_toc->md_ss_toc[desc->minidump_id];
pr_debug("Minidump : ss_toc_addr for ss is %pa and desc->minidump_id is %d\n",
&ss_toc_addr, desc->minidump_id);
memcpy(&desc->minidump_ss, &ss_toc_addr,
sizeof(ss_toc_addr));
if (collect_aux_minidump_ids(desc) < 0)
pr_err("Failed to get aux %s minidump ids\n",
desc->name);
}
}
ret = pil_parse_devicetree(desc);
if (ret)
goto err_parse_dt;
/* Ignore users who don't make any sense */
WARN(desc->ops->proxy_unvote && desc->proxy_unvote_irq == 0
&& !desc->proxy_timeout,
"Invalid proxy unvote callback or a proxy timeout of 0 was specified or no proxy unvote IRQ was specified.\n");
if (desc->proxy_unvote_irq) {
ret = request_threaded_irq(desc->proxy_unvote_irq,
NULL,
proxy_unvote_intr_handler,
IRQF_ONESHOT | IRQF_TRIGGER_RISING,
desc->name, desc);
if (ret < 0) {
dev_err(desc->dev,
"Unable to request proxy unvote IRQ: %d\n",
ret);
goto err;
}
disable_irq(desc->proxy_unvote_irq);
}
snprintf(priv->wname, sizeof(priv->wname), "pil-%s", desc->name);
priv->ws = wakeup_source_register(desc->dev, priv->wname);
if (!priv->ws) {
ret = -ENOMEM;
goto err;
}
INIT_DELAYED_WORK(&priv->proxy, pil_proxy_unvote_work);
INIT_LIST_HEAD(&priv->segs);
/* Make sure mapping functions are set. */
if (!desc->map_fw_mem)
desc->map_fw_mem = map_fw_mem;
if (!desc->unmap_fw_mem)
desc->unmap_fw_mem = unmap_fw_mem;
desc->minidump_as_elf32 = of_property_read_bool(
ofnode, "qcom,minidump-as-elf32");
return 0;
err_parse_dt:
ida_simple_remove(&pil_ida, priv->id);
err:
kfree(desc->aux_minidump);
kfree(desc->aux_minidump_ids);
kfree(priv);
return ret;
}
EXPORT_SYMBOL(pil_desc_init);
/**
* pil_desc_release() - Release a pil descriptor
* @desc: descriptor to free
*/
void pil_desc_release(struct pil_desc *desc)
{
struct pil_priv *priv = desc->priv;
if (priv) {
ida_simple_remove(&pil_ida, priv->id);
flush_delayed_work(&priv->proxy);
wakeup_source_unregister(priv->ws);
}
desc->priv = NULL;
kfree(priv);
}
EXPORT_SYMBOL(pil_desc_release);
static int pil_pm_notify(struct notifier_block *b, unsigned long event, void *p)
{
switch (event) {
case PM_SUSPEND_PREPARE:
down_write(&pil_pm_rwsem);
break;
case PM_POST_SUSPEND:
up_write(&pil_pm_rwsem);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block pil_pm_notifier = {
.notifier_call = pil_pm_notify,
};
static int __init msm_pil_init(void)
{
struct device_node *np;
struct resource res;
int i;
size_t size;
np = of_find_compatible_node(NULL, NULL, "qcom,msm-imem-pil");
if (!np) {
pr_warn("pil: failed to find qcom,msm-imem-pil node\n");
goto out;
}
if (of_address_to_resource(np, 0, &res)) {
pr_warn("pil: address to resource on imem region failed\n");
goto out;
}
pil_info_base = ioremap(res.start, resource_size(&res));
if (!pil_info_base) {
pr_warn("pil: could not map imem region\n");
goto out;
}
if (__raw_readl(pil_info_base) == 0x53444247) {
pr_info("pil: pil-imem set to disable pil timeouts\n");
disable_timeouts = true;
}
for (i = 0; i < resource_size(&res)/sizeof(u32); i++)
writel_relaxed(0, pil_info_base + (i * sizeof(u32)));
/* Get Global minidump ToC*/
g_md_toc = qcom_smem_get(QCOM_SMEM_HOST_ANY, SBL_MINIDUMP_SMEM_ID,
&size);
pr_debug("Minidump: g_md_toc is %pa\n", &g_md_toc);
if (PTR_ERR(g_md_toc) == -EPROBE_DEFER) {
pr_err("SMEM is not initialized.\n");
return -EPROBE_DEFER;
}
pil_wq = alloc_workqueue("pil_workqueue", WQ_HIGHPRI | WQ_UNBOUND, 0);
if (!pil_wq)
pr_warn("pil: Defaulting to sequential firmware loading.\n");
pil_ipc_log = ipc_log_context_create(2, "PIL-IPC", 0);
if (!pil_ipc_log)
pr_warn("Failed to setup PIL ipc logging\n");
out:
return register_pm_notifier(&pil_pm_notifier);
}
subsys_initcall(msm_pil_init);
static void __exit msm_pil_exit(void)
{
if (pil_wq)
destroy_workqueue(pil_wq);
unregister_pm_notifier(&pil_pm_notifier);
if (pil_info_base)
iounmap(pil_info_base);
}
module_exit(msm_pil_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Load peripheral images and bring peripherals out of reset");