/* * Kernel Probes (KProbes) * arch/ia64/kernel/kprobes.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004 * Copyright (C) Intel Corporation, 2005 * * 2005-Apr Rusty Lynch and Anil S Keshavamurthy * adapted from i386 */ #include #include #include #include #include #include #include #include #include #include extern void jprobe_inst_return(void); /* kprobe_status settings */ #define KPROBE_HIT_ACTIVE 0x00000001 #define KPROBE_HIT_SS 0x00000002 static struct kprobe *current_kprobe; static unsigned long kprobe_status; static struct pt_regs jprobe_saved_regs; enum instruction_type {A, I, M, F, B, L, X, u}; static enum instruction_type bundle_encoding[32][3] = { { M, I, I }, /* 00 */ { M, I, I }, /* 01 */ { M, I, I }, /* 02 */ { M, I, I }, /* 03 */ { M, L, X }, /* 04 */ { M, L, X }, /* 05 */ { u, u, u }, /* 06 */ { u, u, u }, /* 07 */ { M, M, I }, /* 08 */ { M, M, I }, /* 09 */ { M, M, I }, /* 0A */ { M, M, I }, /* 0B */ { M, F, I }, /* 0C */ { M, F, I }, /* 0D */ { M, M, F }, /* 0E */ { M, M, F }, /* 0F */ { M, I, B }, /* 10 */ { M, I, B }, /* 11 */ { M, B, B }, /* 12 */ { M, B, B }, /* 13 */ { u, u, u }, /* 14 */ { u, u, u }, /* 15 */ { B, B, B }, /* 16 */ { B, B, B }, /* 17 */ { M, M, B }, /* 18 */ { M, M, B }, /* 19 */ { u, u, u }, /* 1A */ { u, u, u }, /* 1B */ { M, F, B }, /* 1C */ { M, F, B }, /* 1D */ { u, u, u }, /* 1E */ { u, u, u }, /* 1F */ }; /* * In this function we check to see if the instruction * is IP relative instruction and update the kprobe * inst flag accordingly */ static void update_kprobe_inst_flag(uint template, uint slot, uint major_opcode, unsigned long kprobe_inst, struct kprobe *p) { p->ainsn.inst_flag = 0; p->ainsn.target_br_reg = 0; if (bundle_encoding[template][slot] == B) { switch (major_opcode) { case INDIRECT_CALL_OPCODE: p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); break; case IP_RELATIVE_PREDICT_OPCODE: case IP_RELATIVE_BRANCH_OPCODE: p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; break; case IP_RELATIVE_CALL_OPCODE: p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); break; } } else if (bundle_encoding[template][slot] == X) { switch (major_opcode) { case LONG_CALL_OPCODE: p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); break; } } return; } /* * In this function we check to see if the instruction * (qp) cmpx.crel.ctype p1,p2=r2,r3 * on which we are inserting kprobe is cmp instruction * with ctype as unc. */ static uint is_cmp_ctype_unc_inst(uint template, uint slot, uint major_opcode, unsigned long kprobe_inst) { cmp_inst_t cmp_inst; uint ctype_unc = 0; if (!((bundle_encoding[template][slot] == I) || (bundle_encoding[template][slot] == M))) goto out; if (!((major_opcode == 0xC) || (major_opcode == 0xD) || (major_opcode == 0xE))) goto out; cmp_inst.l = kprobe_inst; if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) { /* Integere compare - Register Register (A6 type)*/ if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1)) ctype_unc = 1; } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) { /* Integere compare - Immediate Register (A8 type)*/ if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1)) ctype_unc = 1; } out: return ctype_unc; } /* * In this function we override the bundle with * the break instruction at the given slot. */ static void prepare_break_inst(uint template, uint slot, uint major_opcode, unsigned long kprobe_inst, struct kprobe *p) { unsigned long break_inst = BREAK_INST; bundle_t *bundle = &p->ainsn.insn.bundle; /* * Copy the original kprobe_inst qualifying predicate(qp) * to the break instruction iff !is_cmp_ctype_unc_inst * because for cmp instruction with ctype equal to unc, * which is a special instruction always needs to be * executed regradless of qp */ if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) break_inst |= (0x3f & kprobe_inst); switch (slot) { case 0: bundle->quad0.slot0 = break_inst; break; case 1: bundle->quad0.slot1_p0 = break_inst; bundle->quad1.slot1_p1 = break_inst >> (64-46); break; case 2: bundle->quad1.slot2 = break_inst; break; } /* * Update the instruction flag, so that we can * emulate the instruction properly after we * single step on original instruction */ update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p); } static inline void get_kprobe_inst(bundle_t *bundle, uint slot, unsigned long *kprobe_inst, uint *major_opcode) { unsigned long kprobe_inst_p0, kprobe_inst_p1; unsigned int template; template = bundle->quad0.template; switch (slot) { case 0: *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT); *kprobe_inst = bundle->quad0.slot0; break; case 1: *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT); kprobe_inst_p0 = bundle->quad0.slot1_p0; kprobe_inst_p1 = bundle->quad1.slot1_p1; *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46)); break; case 2: *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT); *kprobe_inst = bundle->quad1.slot2; break; } } static int valid_kprobe_addr(int template, int slot, unsigned long addr) { if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) { printk(KERN_WARNING "Attempting to insert unaligned kprobe at 0x%lx\n", addr); return -EINVAL; } return 0; } int arch_prepare_kprobe(struct kprobe *p) { unsigned long addr = (unsigned long) p->addr; unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL); unsigned long kprobe_inst=0; unsigned int slot = addr & 0xf, template, major_opcode = 0; bundle_t *bundle = &p->ainsn.insn.bundle; memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t)); memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t)); template = bundle->quad0.template; if(valid_kprobe_addr(template, slot, addr)) return -EINVAL; /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */ if (slot == 1 && bundle_encoding[template][1] == L) slot++; /* Get kprobe_inst and major_opcode from the bundle */ get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode); prepare_break_inst(template, slot, major_opcode, kprobe_inst, p); return 0; } void arch_arm_kprobe(struct kprobe *p) { unsigned long addr = (unsigned long)p->addr; unsigned long arm_addr = addr & ~0xFULL; memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t)); flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t)); } void arch_disarm_kprobe(struct kprobe *p) { unsigned long addr = (unsigned long)p->addr; unsigned long arm_addr = addr & ~0xFULL; /* p->opcode contains the original unaltered bundle */ memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t)); flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t)); } void arch_remove_kprobe(struct kprobe *p) { } /* * We are resuming execution after a single step fault, so the pt_regs * structure reflects the register state after we executed the instruction * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust * the ip to point back to the original stack address. To set the IP address * to original stack address, handle the case where we need to fixup the * relative IP address and/or fixup branch register. */ static void resume_execution(struct kprobe *p, struct pt_regs *regs) { unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL; unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL; unsigned long template; int slot = ((unsigned long)p->addr & 0xf); template = p->opcode.bundle.quad0.template; if (slot == 1 && bundle_encoding[template][1] == L) slot = 2; if (p->ainsn.inst_flag) { if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) { /* Fix relative IP address */ regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr; } if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) { /* * Fix target branch register, software convention is * to use either b0 or b6 or b7, so just checking * only those registers */ switch (p->ainsn.target_br_reg) { case 0: if ((regs->b0 == bundle_addr) || (regs->b0 == bundle_addr + 0x10)) { regs->b0 = (regs->b0 - bundle_addr) + resume_addr; } break; case 6: if ((regs->b6 == bundle_addr) || (regs->b6 == bundle_addr + 0x10)) { regs->b6 = (regs->b6 - bundle_addr) + resume_addr; } break; case 7: if ((regs->b7 == bundle_addr) || (regs->b7 == bundle_addr + 0x10)) { regs->b7 = (regs->b7 - bundle_addr) + resume_addr; } break; } /* end switch */ } goto turn_ss_off; } if (slot == 2) { if (regs->cr_iip == bundle_addr + 0x10) { regs->cr_iip = resume_addr + 0x10; } } else { if (regs->cr_iip == bundle_addr) { regs->cr_iip = resume_addr; } } turn_ss_off: /* Turn off Single Step bit */ ia64_psr(regs)->ss = 0; } static void prepare_ss(struct kprobe *p, struct pt_regs *regs) { unsigned long bundle_addr = (unsigned long) &p->opcode.bundle; unsigned long slot = (unsigned long)p->addr & 0xf; /* Update instruction pointer (IIP) and slot number (IPSR.ri) */ regs->cr_iip = bundle_addr & ~0xFULL; if (slot > 2) slot = 0; ia64_psr(regs)->ri = slot; /* turn on single stepping */ ia64_psr(regs)->ss = 1; } static int pre_kprobes_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs); preempt_disable(); /* Handle recursion cases */ if (kprobe_running()) { p = get_kprobe(addr); if (p) { if (kprobe_status == KPROBE_HIT_SS) { unlock_kprobes(); goto no_kprobe; } arch_disarm_kprobe(p); ret = 1; } else { /* * jprobe instrumented function just completed */ p = current_kprobe; if (p->break_handler && p->break_handler(p, regs)) { goto ss_probe; } } } lock_kprobes(); p = get_kprobe(addr); if (!p) { unlock_kprobes(); goto no_kprobe; } kprobe_status = KPROBE_HIT_ACTIVE; current_kprobe = p; if (p->pre_handler && p->pre_handler(p, regs)) /* * Our pre-handler is specifically requesting that we just * do a return. This is handling the case where the * pre-handler is really our special jprobe pre-handler. */ return 1; ss_probe: prepare_ss(p, regs); kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: preempt_enable_no_resched(); return ret; } static int post_kprobes_handler(struct pt_regs *regs) { if (!kprobe_running()) return 0; if (current_kprobe->post_handler) current_kprobe->post_handler(current_kprobe, regs, 0); resume_execution(current_kprobe, regs); unlock_kprobes(); preempt_enable_no_resched(); return 1; } static int kprobes_fault_handler(struct pt_regs *regs, int trapnr) { if (!kprobe_running()) return 0; if (current_kprobe->fault_handler && current_kprobe->fault_handler(current_kprobe, regs, trapnr)) return 1; if (kprobe_status & KPROBE_HIT_SS) { resume_execution(current_kprobe, regs); unlock_kprobes(); preempt_enable_no_resched(); } return 0; } int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *)data; switch(val) { case DIE_BREAK: if (pre_kprobes_handler(args->regs)) return NOTIFY_STOP; break; case DIE_SS: if (post_kprobes_handler(args->regs)) return NOTIFY_STOP; break; case DIE_PAGE_FAULT: if (kprobes_fault_handler(args->regs, args->trapnr)) return NOTIFY_STOP; default: break; } return NOTIFY_DONE; } int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct jprobe *jp = container_of(p, struct jprobe, kp); unsigned long addr = ((struct fnptr *)(jp->entry))->ip; /* save architectural state */ jprobe_saved_regs = *regs; /* after rfi, execute the jprobe instrumented function */ regs->cr_iip = addr & ~0xFULL; ia64_psr(regs)->ri = addr & 0xf; regs->r1 = ((struct fnptr *)(jp->entry))->gp; /* * fix the return address to our jprobe_inst_return() function * in the jprobes.S file */ regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip; return 1; } int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) { *regs = jprobe_saved_regs; return 1; }