// SPDX-License-Identifier: GPL-2.0 /* * Shadow Call Stack support. * * Copyright (C) 2019 Google LLC */ #include #include #include #include #include #include #include #include #include static inline void *__scs_base(struct task_struct *tsk) { /* * To minimize risk the of exposure, architectures may clear a * task's thread_info::shadow_call_stack while that task is * running, and only save/restore the active shadow call stack * pointer when the usual register may be clobbered (e.g. across * context switches). * * The shadow call stack is aligned to SCS_SIZE, and grows * upwards, so we can mask out the low bits to extract the base * when the task is not running. */ return (void *)((unsigned long)task_scs(tsk) & ~(SCS_SIZE - 1)); } static inline unsigned long *scs_magic(void *s) { return (unsigned long *)(s + SCS_SIZE) - 1; } static inline void scs_set_magic(void *s) { *scs_magic(s) = SCS_END_MAGIC; } #ifdef CONFIG_SHADOW_CALL_STACK_VMAP /* Matches NR_CACHED_STACKS for VMAP_STACK */ #define NR_CACHED_SCS 2 static DEFINE_PER_CPU(void *, scs_cache[NR_CACHED_SCS]); static void *scs_alloc(int node) { int i; void *s; for (i = 0; i < NR_CACHED_SCS; i++) { s = this_cpu_xchg(scs_cache[i], NULL); if (s) { memset(s, 0, SCS_SIZE); goto out; } } /* * We allocate a full page for the shadow stack, which should be * more than we need. Check the assumption nevertheless. */ BUILD_BUG_ON(SCS_SIZE > PAGE_SIZE); s = __vmalloc_node_range(PAGE_SIZE, SCS_SIZE, VMALLOC_START, VMALLOC_END, GFP_SCS, PAGE_KERNEL, 0, node, __builtin_return_address(0)); out: if (s) scs_set_magic(s); /* TODO: poison for KASAN, unpoison in scs_free */ return s; } static void scs_free(void *s) { int i; for (i = 0; i < NR_CACHED_SCS; i++) if (this_cpu_cmpxchg(scs_cache[i], 0, s) == NULL) return; vfree_atomic(s); } static struct page *__scs_page(struct task_struct *tsk) { return vmalloc_to_page(__scs_base(tsk)); } static int scs_cleanup(unsigned int cpu) { int i; void **cache = per_cpu_ptr(scs_cache, cpu); for (i = 0; i < NR_CACHED_SCS; i++) { vfree(cache[i]); cache[i] = NULL; } return 0; } void __init scs_init(void) { WARN_ON(cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "scs:scs_cache", NULL, scs_cleanup) < 0); } #else /* !CONFIG_SHADOW_CALL_STACK_VMAP */ static struct kmem_cache *scs_cache; static inline void *scs_alloc(int node) { void *s; s = kmem_cache_alloc_node(scs_cache, GFP_SCS, node); if (s) { scs_set_magic(s); /* * Poison the allocation to catch unintentional accesses to * the shadow stack when KASAN is enabled. */ kasan_poison_object_data(scs_cache, s); } return s; } static inline void scs_free(void *s) { kasan_unpoison_object_data(scs_cache, s); kmem_cache_free(scs_cache, s); } static struct page *__scs_page(struct task_struct *tsk) { return virt_to_page(__scs_base(tsk)); } void __init scs_init(void) { scs_cache = kmem_cache_create("scs_cache", SCS_SIZE, SCS_SIZE, 0, NULL); WARN_ON(!scs_cache); } #endif /* CONFIG_SHADOW_CALL_STACK_VMAP */ void scs_task_reset(struct task_struct *tsk) { /* * Reset the shadow stack to the base address in case the task * is reused. */ task_set_scs(tsk, __scs_base(tsk)); } static void scs_account(struct task_struct *tsk, int account) { mod_zone_page_state(page_zone(__scs_page(tsk)), NR_KERNEL_SCS_BYTES, account * SCS_SIZE); } int scs_prepare(struct task_struct *tsk, int node) { void *s; s = scs_alloc(node); if (!s) return -ENOMEM; task_set_scs(tsk, s); scs_account(tsk, 1); return 0; } #ifdef CONFIG_DEBUG_STACK_USAGE static inline unsigned long scs_used(struct task_struct *tsk) { unsigned long *p = __scs_base(tsk); unsigned long *end = scs_magic(p); unsigned long s = (unsigned long)p; while (p < end && READ_ONCE_NOCHECK(*p)) p++; return (unsigned long)p - s; } static void scs_check_usage(struct task_struct *tsk) { static DEFINE_SPINLOCK(lock); static unsigned long highest; unsigned long used = scs_used(tsk); if (used <= highest) return; spin_lock(&lock); if (used > highest) { pr_info("%s (%d): highest shadow stack usage: %lu bytes\n", tsk->comm, task_pid_nr(tsk), used); highest = used; } spin_unlock(&lock); } #else static inline void scs_check_usage(struct task_struct *tsk) { } #endif bool scs_corrupted(struct task_struct *tsk) { unsigned long *magic = scs_magic(__scs_base(tsk)); return READ_ONCE_NOCHECK(*magic) != SCS_END_MAGIC; } void scs_release(struct task_struct *tsk) { void *s; s = __scs_base(tsk); if (!s) return; WARN_ON(scs_corrupted(tsk)); scs_check_usage(tsk); scs_account(tsk, -1); task_set_scs(tsk, NULL); scs_free(s); }