// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013-2019, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #define SMP2P_NUM_PROCS 16 #define MAX_RETRIES 20 #define SM_VERSION 1 #define SM_BLOCKSIZE 128 #define SMQ_MAGIC_INIT 0xFF00FF00 #define SMQ_MAGIC_PRODUCER (SMQ_MAGIC_INIT | 0x1) #define SMQ_MAGIC_CONSUMER (SMQ_MAGIC_INIT | 0x2) #define SMEM_LC_DEBUGGER 470 enum SMQ_STATUS { SMQ_SUCCESS = 0, SMQ_ENOMEMORY = -1, SMQ_EBADPARM = -2, SMQ_UNDERFLOW = -3, SMQ_OVERFLOW = -4 }; enum smq_type { PRODUCER = 1, CONSUMER = 2, INVALID = 3 }; struct smq_block_map { uint32_t index_read; uint32_t num_blocks; uint8_t *map; }; struct smq_node { uint16_t index_block; uint16_t num_blocks; } __attribute__ ((__packed__)); struct smq_hdr { uint8_t producer_version; uint8_t consumer_version; } __attribute__ ((__packed__)); struct smq_out_state { uint32_t init; uint32_t index_check_queue_for_reset; uint32_t index_sent_write; uint32_t index_free_read; } __attribute__ ((__packed__)); struct smq_out { struct smq_out_state s; struct smq_node sent[1]; }; struct smq_in_state { uint32_t init; uint32_t index_check_queue_for_reset_ack; uint32_t index_sent_read; uint32_t index_free_write; } __attribute__ ((__packed__)); struct smq_in { struct smq_in_state s; struct smq_node free[1]; }; struct smq { struct smq_hdr *hdr; struct smq_out *out; struct smq_in *in; uint8_t *blocks; uint32_t num_blocks; struct mutex *lock; uint32_t initialized; struct smq_block_map block_map; enum smq_type type; }; struct gpio_info { int gpio_base_id; int irq_base_id; unsigned int smem_bit; struct qcom_smem_state *smem_state; }; struct rdbg_data { struct device *device; struct completion work; struct gpio_info in; struct gpio_info out; bool device_initialized; int gpio_out_offset; bool device_opened; void *smem_addr; size_t smem_size; struct smq producer_smrb; struct smq consumer_smrb; struct mutex write_mutex; }; struct rdbg_device { struct cdev cdev; struct class *class; dev_t dev_no; int num_devices; struct rdbg_data *rdbg_data; }; int registers[32] = {0}; static struct rdbg_device g_rdbg_instance = { .class = NULL, .dev_no = 0, .num_devices = SMP2P_NUM_PROCS, .rdbg_data = NULL, }; struct processor_specific_info { char *name; unsigned int smem_buffer_addr; size_t smem_buffer_size; }; static struct processor_specific_info proc_info[SMP2P_NUM_PROCS] = { {0}, /*APPS*/ {"rdbg_modem", 0, 0}, /*MODEM*/ {"rdbg_adsp", SMEM_LC_DEBUGGER, 16*1024}, /*ADSP*/ {0}, /*SMP2P_RESERVED_PROC_1*/ {"rdbg_wcnss", 0, 0}, /*WCNSS*/ {"rdbg_cdsp", SMEM_LC_DEBUGGER, 16*1024}, /*CDSP*/ {NULL}, /*SMP2P_POWER_PROC*/ {NULL}, /*SMP2P_TZ_PROC*/ {NULL}, /*EMPTY*/ {NULL}, /*EMPTY*/ {NULL}, /*EMPTY*/ {NULL}, /*EMPTY*/ {NULL}, /*EMPTY*/ {NULL}, /*EMPTY*/ {NULL}, /*EMPTY*/ {NULL} /*SMP2P_REMOTE_MOCK_PROC*/ }; static int smq_blockmap_get(struct smq_block_map *block_map, uint32_t *block_index, uint32_t n) { uint32_t start; uint32_t mark = 0; uint32_t found = 0; uint32_t i = 0; start = block_map->index_read; if (n == 1) { do { if (!block_map->map[block_map->index_read]) { *block_index = block_map->index_read; block_map->map[block_map->index_read] = 1; block_map->index_read++; block_map->index_read %= block_map->num_blocks; return SMQ_SUCCESS; } block_map->index_read++; } while (start != (block_map->index_read %= block_map->num_blocks)); } else { mark = block_map->num_blocks; do { if (!block_map->map[block_map->index_read]) { if (mark > block_map->index_read) { mark = block_map->index_read; start = block_map->index_read; found = 0; } found++; if (found == n) { *block_index = mark; for (i = 0; i < n; i++) block_map->map[mark + i] = (uint8_t)(n - i); block_map->index_read += block_map->map [block_map->index_read] - 1; return SMQ_SUCCESS; } } else { found = 0; block_map->index_read += block_map->map [block_map->index_read] - 1; mark = block_map->num_blocks; } block_map->index_read++; } while (start != (block_map->index_read %= block_map->num_blocks)); } return SMQ_ENOMEMORY; } static void smq_blockmap_put(struct smq_block_map *block_map, uint32_t i) { uint32_t num_blocks = block_map->map[i]; while (num_blocks--) { block_map->map[i] = 0; i++; } } static int smq_blockmap_reset(struct smq_block_map *block_map) { if (!block_map->map) return SMQ_ENOMEMORY; memset(block_map->map, 0, block_map->num_blocks + 1); block_map->index_read = 0; return SMQ_SUCCESS; } static int smq_blockmap_ctor(struct smq_block_map *block_map, uint32_t num_blocks) { if (num_blocks <= 1) return SMQ_ENOMEMORY; block_map->map = kcalloc(num_blocks, sizeof(uint8_t), GFP_KERNEL); if (!block_map->map) return SMQ_ENOMEMORY; block_map->num_blocks = num_blocks - 1; smq_blockmap_reset(block_map); return SMQ_SUCCESS; } static void smq_blockmap_dtor(struct smq_block_map *block_map) { kfree(block_map->map); block_map->map = NULL; } static int smq_free(struct smq *smq, void *data) { struct smq_node node; uint32_t index_block; int err = SMQ_SUCCESS; if (smq->lock) mutex_lock(smq->lock); if ((smq->hdr->producer_version != SM_VERSION) && (smq->out->s.init != SMQ_MAGIC_PRODUCER)) { err = SMQ_UNDERFLOW; goto bail; } index_block = ((uint8_t *)data - smq->blocks) / SM_BLOCKSIZE; if (index_block >= smq->num_blocks) { err = SMQ_EBADPARM; goto bail; } node.index_block = (uint16_t)index_block; node.num_blocks = 0; *((struct smq_node *)(smq->in->free + smq->in->s.index_free_write)) = node; smq->in->s.index_free_write = (smq->in->s.index_free_write + 1) % smq->num_blocks; bail: if (smq->lock) mutex_unlock(smq->lock); return err; } static int smq_receive(struct smq *smq, void **pp, int *pnsize, int *pbmore) { struct smq_node *node; int err = SMQ_SUCCESS; int more = 0; if ((smq->hdr->producer_version != SM_VERSION) && (smq->out->s.init != SMQ_MAGIC_PRODUCER)) return SMQ_UNDERFLOW; if (smq->in->s.index_sent_read == smq->out->s.index_sent_write) { err = SMQ_UNDERFLOW; goto bail; } node = (struct smq_node *)(smq->out->sent + smq->in->s.index_sent_read); if (node->index_block >= smq->num_blocks) { err = SMQ_EBADPARM; goto bail; } smq->in->s.index_sent_read = (smq->in->s.index_sent_read + 1) % smq->num_blocks; *pp = smq->blocks + (node->index_block * SM_BLOCKSIZE); *pnsize = SM_BLOCKSIZE * node->num_blocks; /* * Ensure that the reads and writes are updated in the memory * when they are done and not cached. Also, ensure that the reads * and writes are not reordered as they are shared between two cores. */ rmb(); if (smq->in->s.index_sent_read != smq->out->s.index_sent_write) more = 1; bail: *pbmore = more; return err; } static int smq_alloc_send(struct smq *smq, const uint8_t *pcb, int nsize) { void *pv = 0; int num_blocks; uint32_t index_block = 0; int err = SMQ_SUCCESS; struct smq_node *node = NULL; mutex_lock(smq->lock); if ((smq->in->s.init == SMQ_MAGIC_CONSUMER) && (smq->hdr->consumer_version == SM_VERSION)) { if (smq->out->s.index_check_queue_for_reset == smq->in->s.index_check_queue_for_reset_ack) { while (smq->out->s.index_free_read != smq->in->s.index_free_write) { node = (struct smq_node *)( smq->in->free + smq->out->s.index_free_read); if (node->index_block >= smq->num_blocks) { err = SMQ_EBADPARM; goto bail; } smq->out->s.index_free_read = (smq->out->s.index_free_read + 1) % smq->num_blocks; smq_blockmap_put(&smq->block_map, node->index_block); /* * Ensure that the reads and writes are * updated in the memory when they are done * and not cached. Also, ensure that the reads * and writes are not reordered as they are * shared between two cores. */ rmb(); } } } num_blocks = ALIGN(nsize, SM_BLOCKSIZE)/SM_BLOCKSIZE; err = smq_blockmap_get(&smq->block_map, &index_block, num_blocks); if (err != SMQ_SUCCESS) goto bail; pv = smq->blocks + (SM_BLOCKSIZE * index_block); err = copy_from_user((void *)pv, (void *)pcb, nsize); if (err != 0) goto bail; ((struct smq_node *)(smq->out->sent + smq->out->s.index_sent_write))->index_block = (uint16_t)index_block; ((struct smq_node *)(smq->out->sent + smq->out->s.index_sent_write))->num_blocks = (uint16_t)num_blocks; smq->out->s.index_sent_write = (smq->out->s.index_sent_write + 1) % smq->num_blocks; bail: if (err != SMQ_SUCCESS) { if (pv) smq_blockmap_put(&smq->block_map, index_block); } mutex_unlock(smq->lock); return err; } static int smq_reset_producer_queue_internal(struct smq *smq, uint32_t reset_num) { int retval = 0; uint32_t i; if (smq->type != PRODUCER) goto bail; mutex_lock(smq->lock); if (smq->out->s.index_check_queue_for_reset != reset_num) { smq->out->s.index_check_queue_for_reset = reset_num; for (i = 0; i < smq->num_blocks; i++) (smq->out->sent + i)->index_block = 0xFFFF; smq_blockmap_reset(&smq->block_map); smq->out->s.index_sent_write = 0; smq->out->s.index_free_read = 0; retval = 1; } mutex_unlock(smq->lock); bail: return retval; } static int smq_check_queue_reset(struct smq *p_cons, struct smq *p_prod) { int retval = 0; uint32_t reset_num, i; if ((p_cons->type != CONSUMER) || (p_cons->out->s.init != SMQ_MAGIC_PRODUCER) || (p_cons->hdr->producer_version != SM_VERSION)) goto bail; reset_num = p_cons->out->s.index_check_queue_for_reset; if (p_cons->in->s.index_check_queue_for_reset_ack != reset_num) { p_cons->in->s.index_check_queue_for_reset_ack = reset_num; for (i = 0; i < p_cons->num_blocks; i++) (p_cons->in->free + i)->index_block = 0xFFFF; p_cons->in->s.index_sent_read = 0; p_cons->in->s.index_free_write = 0; retval = smq_reset_producer_queue_internal(p_prod, reset_num); } bail: return retval; } static int check_subsystem_debug_enabled(void *base_addr, int size) { int num_blocks; uint8_t *pb_orig; uint8_t *pb; struct smq smq; int err = 0; pb = pb_orig = (uint8_t *)base_addr; pb += sizeof(struct smq_hdr); pb = PTR_ALIGN(pb, 8); size -= pb - (uint8_t *)pb_orig; num_blocks = (int)((size - sizeof(struct smq_out_state) - sizeof(struct smq_in_state))/(SM_BLOCKSIZE + sizeof(struct smq_node) * 2)); if (num_blocks <= 0) { err = SMQ_EBADPARM; goto bail; } pb += num_blocks * SM_BLOCKSIZE; smq.out = (struct smq_out *)pb; pb += sizeof(struct smq_out_state) + (num_blocks * sizeof(struct smq_node)); smq.in = (struct smq_in *)pb; if (smq.in->s.init != SMQ_MAGIC_CONSUMER) { pr_err("%s, smq in consumer not initialized\n", __func__); err = -ECOMM; } bail: return err; } static void smq_dtor(struct smq *smq) { if (smq->initialized == SMQ_MAGIC_INIT) { switch (smq->type) { case PRODUCER: smq->out->s.init = 0; smq_blockmap_dtor(&smq->block_map); break; case CONSUMER: smq->in->s.init = 0; break; default: case INVALID: break; } smq->initialized = 0; } } /* * The shared memory is used as a circular ring buffer in each direction. * Thus we have a bi-directional shared memory channel between the AP * and a subsystem. We call this SMQ. Each memory channel contains a header, * data and a control mechanism that is used to synchronize read and write * of data between the AP and the remote subsystem. * * Overall SMQ memory view: * * +------------------------------------------------+ * | SMEM buffer | * |-----------------------+------------------------| * |Producer: LA | Producer: Remote | * |Consumer: Remote | subsystem | * | subsystem | Consumer: LA | * | | | * | Producer| Consumer| * +-----------------------+------------------------+ * | | * | | * | +--------------------------------------+ * | | * | | * v v * +--------------------------------------------------------------+ * | Header | Data | Control | * +-----------+---+---+---+-----+----+--+--+-----+---+--+--+-----+ * | | b | b | b | | S |n |n | | S |n |n | | * | Producer | l | l | l | | M |o |o | | M |o |o | | * | Ver | o | o | o | | Q |d |d | | Q |d |d | | * |-----------| c | c | c | ... | |e |e | ... | |e |e | ... | * | | k | k | k | | O | | | | I | | | | * | Consumer | | | | | u |0 |1 | | n |0 |1 | | * | Ver | 0 | 1 | 2 | | t | | | | | | | | * +-----------+---+---+---+-----+----+--+--+-----+---+--+--+-----+ * | | * + | * | * +------------------------+ * | * v * +----+----+----+----+ * | SMQ Nodes | * |----|----|----|----| * Node # | 0 | 1 | 2 | ...| * |----|----|----|----| * Starting Block Index # | 0 | 3 | 8 | ...| * |----|----|----|----| * # of blocks | 3 | 5 | 1 | ...| * +----+----+----+----+ * * Header: Contains version numbers for software compatibility to ensure * that both producers and consumers on the AP and subsystems know how to * read from and write to the queue. * Both the producer and consumer versions are 1. * +---------+-------------------+ * | Size | Field | * +---------+-------------------+ * | 1 byte | Producer Version | * +---------+-------------------+ * | 1 byte | Consumer Version | * +---------+-------------------+ * * Data: The data portion contains multiple blocks [0..N] of a fixed size. * The block size SM_BLOCKSIZE is fixed to 128 bytes for header version #1. * Payload sent from the debug agent app is split (if necessary) and placed * in these blocks. The first data block is placed at the next 8 byte aligned * address after the header. * * The number of blocks for a given SMEM allocation is derived as follows: * Number of Blocks = ((Total Size - Alignment - Size of Header * - Size of SMQIn - Size of SMQOut)/(SM_BLOCKSIZE)) * * The producer maintains a private block map of each of these blocks to * determine which of these blocks in the queue is available and which are free. * * Control: * The control portion contains a list of nodes [0..N] where N is number * of available data blocks. Each node identifies the data * block indexes that contain a particular debug message to be transferred, * and the number of blocks it took to hold the contents of the message. * * Each node has the following structure: * +---------+-------------------+ * | Size | Field | * +---------+-------------------+ * | 2 bytes |Staring Block Index| * +---------+-------------------+ * | 2 bytes |Number of Blocks | * +---------+-------------------+ * * The producer and the consumer update different parts of the control channel * (SMQOut / SMQIn) respectively. Each of these control data structures contains * information about the last node that was written / read, and the actual nodes * that were written/read. * * SMQOut Structure (R/W by producer, R by consumer): * +---------+-------------------+ * | Size | Field | * +---------+-------------------+ * | 4 bytes | Magic Init Number | * +---------+-------------------+ * | 4 bytes | Reset | * +---------+-------------------+ * | 4 bytes | Last Sent Index | * +---------+-------------------+ * | 4 bytes | Index Free Read | * +---------+-------------------+ * * SMQIn Structure (R/W by consumer, R by producer): * +---------+-------------------+ * | Size | Field | * +---------+-------------------+ * | 4 bytes | Magic Init Number | * +---------+-------------------+ * | 4 bytes | Reset ACK | * +---------+-------------------+ * | 4 bytes | Last Read Index | * +---------+-------------------+ * | 4 bytes | Index Free Write | * +---------+-------------------+ * * Magic Init Number: * Both SMQ Out and SMQ In initialize this field with a predefined magic * number so as to make sure that both the consumer and producer blocks * have fully initialized and have valid data in the shared memory control area. * Producer Magic #: 0xFF00FF01 * Consumer Magic #: 0xFF00FF02 */ static int smq_ctor(struct smq *smq, void *base_addr, int size, enum smq_type type, struct mutex *lock_ptr) { int num_blocks; uint8_t *pb_orig; uint8_t *pb; uint32_t i; int err; if (smq->initialized == SMQ_MAGIC_INIT) { err = SMQ_EBADPARM; goto bail; } if (!base_addr || !size) { err = SMQ_EBADPARM; goto bail; } if (type == PRODUCER) smq->lock = lock_ptr; pb_orig = (uint8_t *)base_addr; smq->hdr = (struct smq_hdr *)pb_orig; pb = pb_orig; pb += sizeof(struct smq_hdr); pb = PTR_ALIGN(pb, 8); size -= pb - (uint8_t *)pb_orig; num_blocks = (int)((size - sizeof(struct smq_out_state) - sizeof(struct smq_in_state))/(SM_BLOCKSIZE + sizeof(struct smq_node) * 2)); if (num_blocks <= 0) { err = SMQ_ENOMEMORY; goto bail; } smq->blocks = pb; smq->num_blocks = num_blocks; pb += num_blocks * SM_BLOCKSIZE; smq->out = (struct smq_out *)pb; pb += sizeof(struct smq_out_state) + (num_blocks * sizeof(struct smq_node)); smq->in = (struct smq_in *)pb; smq->type = type; if (type == PRODUCER) { smq->hdr->producer_version = SM_VERSION; for (i = 0; i < smq->num_blocks; i++) (smq->out->sent + i)->index_block = 0xFFFF; err = smq_blockmap_ctor(&smq->block_map, smq->num_blocks); if (err != SMQ_SUCCESS) goto bail; smq->out->s.index_sent_write = 0; smq->out->s.index_free_read = 0; if (smq->out->s.init == SMQ_MAGIC_PRODUCER) { smq->out->s.index_check_queue_for_reset += 1; } else { smq->out->s.index_check_queue_for_reset = 1; smq->out->s.init = SMQ_MAGIC_PRODUCER; } } else { smq->hdr->consumer_version = SM_VERSION; for (i = 0; i < smq->num_blocks; i++) (smq->in->free + i)->index_block = 0xFFFF; smq->in->s.index_sent_read = 0; smq->in->s.index_free_write = 0; if (smq->out->s.init == SMQ_MAGIC_PRODUCER) { smq->in->s.index_check_queue_for_reset_ack = smq->out->s.index_check_queue_for_reset; } else { smq->in->s.index_check_queue_for_reset_ack = 0; } smq->in->s.init = SMQ_MAGIC_CONSUMER; } smq->initialized = SMQ_MAGIC_INIT; err = SMQ_SUCCESS; bail: return err; } static void send_interrupt_to_subsystem(struct rdbg_data *rdbgdata) { unsigned int offset = rdbgdata->gpio_out_offset; unsigned int val; val = (registers[offset]) ^ (BIT(rdbgdata->out.smem_bit+offset)); qcom_smem_state_update_bits(rdbgdata->out.smem_state, BIT(rdbgdata->out.smem_bit+offset), val); registers[offset] = val; rdbgdata->gpio_out_offset = (offset + 1) % 32; } static irqreturn_t on_interrupt_from(int irq, void *ptr) { struct rdbg_data *rdbgdata = (struct rdbg_data *) ptr; dev_dbg(rdbgdata->device, "%s: Received interrupt %d from subsystem\n", __func__, irq); complete(&(rdbgdata->work)); return IRQ_HANDLED; } static int initialize_smq(struct rdbg_data *rdbgdata) { int err = 0; unsigned char *smem_consumer_buffer = rdbgdata->smem_addr; smem_consumer_buffer += (rdbgdata->smem_size/2); if (smq_ctor(&(rdbgdata->producer_smrb), (void *)(rdbgdata->smem_addr), ((rdbgdata->smem_size)/2), PRODUCER, &rdbgdata->write_mutex)) { dev_err(rdbgdata->device, "%s: smq producer allocation failed\n", __func__); err = -ENOMEM; goto bail; } if (smq_ctor(&(rdbgdata->consumer_smrb), (void *)smem_consumer_buffer, ((rdbgdata->smem_size)/2), CONSUMER, NULL)) { dev_err(rdbgdata->device, "%s: smq consumer allocation failed\n", __func__); err = -ENOMEM; } bail: return err; } static int rdbg_open(struct inode *inode, struct file *filp) { int device_id = -1; struct rdbg_device *device = &g_rdbg_instance; struct rdbg_data *rdbgdata = NULL; int err = 0; if (!inode || !device->rdbg_data) { pr_err("Memory not allocated yet\n"); err = -ENODEV; goto bail; } device_id = MINOR(inode->i_rdev); rdbgdata = &device->rdbg_data[device_id]; if (rdbgdata->device_opened) { dev_err(rdbgdata->device, "%s: Device already opened\n", __func__); err = -EEXIST; goto bail; } rdbgdata->smem_size = proc_info[device_id].smem_buffer_size; if (!rdbgdata->smem_size) { dev_err(rdbgdata->device, "%s: smem not initialized\n", __func__); err = -ENOMEM; goto bail; } rdbgdata->smem_addr = qcom_smem_get(QCOM_SMEM_HOST_ANY, proc_info[device_id].smem_buffer_addr, &(rdbgdata->smem_size)); if (!rdbgdata->smem_addr) { dev_err(rdbgdata->device, "%s: Could not allocate smem memory\n", __func__); err = -ENOMEM; pr_err("rdbg:Could not allocate smem memory\n"); goto bail; } dev_dbg(rdbgdata->device, "%s: SMEM address=0x%lx smem_size=%d\n", __func__, (unsigned long)rdbgdata->smem_addr, (unsigned int)rdbgdata->smem_size); if (check_subsystem_debug_enabled(rdbgdata->smem_addr, rdbgdata->smem_size/2)) { dev_err(rdbgdata->device, "%s: Subsystem %s is not debug enabled\n", __func__, proc_info[device_id].name); pr_err("rdbg:Sub system debug is not enabled\n"); err = -ECOMM; goto bail; } init_completion(&rdbgdata->work); err = request_threaded_irq(rdbgdata->in.irq_base_id, NULL, on_interrupt_from, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, proc_info[device_id].name, (void *)&device->rdbg_data[device_id]); if (err) { dev_err(rdbgdata->device, "%s: Failed to register interrupt.Err=%d,irqid=%d.\n", __func__, err, rdbgdata->in.irq_base_id); pr_err("rdbg : Failed to register interrupt %d\n", err); goto bail; } mutex_init(&rdbgdata->write_mutex); err = initialize_smq(rdbgdata); if (err) { dev_err(rdbgdata->device, "Error initializing smq. Err=%d\n", err); pr_err("rdbg: initialize_smq() failed with err %d\n", err); goto smq_bail; } rdbgdata->device_opened = true; filp->private_data = (void *)rdbgdata; return 0; smq_bail: smq_dtor(&(rdbgdata->producer_smrb)); smq_dtor(&(rdbgdata->consumer_smrb)); mutex_destroy(&rdbgdata->write_mutex); bail: return err; } static int rdbg_release(struct inode *inode, struct file *filp) { int device_id = -1; struct rdbg_device *rdbgdevice = &g_rdbg_instance; struct rdbg_data *rdbgdata = NULL; int err = 0; if (!inode || !rdbgdevice->rdbg_data) { pr_err("Memory not allocated yet\n"); err = -ENODEV; goto bail; } device_id = MINOR(inode->i_rdev); rdbgdata = &rdbgdevice->rdbg_data[device_id]; if (rdbgdata->device_opened) { dev_dbg(rdbgdata->device, "%s: Destroying %s.\n", __func__, proc_info[device_id].name); rdbgdata->device_opened = false; complete(&(rdbgdata->work)); if (rdbgdevice->rdbg_data[device_id].producer_smrb.initialized) smq_dtor(&( rdbgdevice->rdbg_data[device_id].producer_smrb)); if (rdbgdevice->rdbg_data[device_id].consumer_smrb.initialized) smq_dtor(&( rdbgdevice->rdbg_data[device_id].consumer_smrb)); mutex_destroy(&rdbgdata->write_mutex); } filp->private_data = NULL; bail: return err; } static ssize_t rdbg_read(struct file *filp, char __user *buf, size_t size, loff_t *offset) { int err = 0; struct rdbg_data *rdbgdata = filp->private_data; void *p_sent_buffer = NULL; int nsize = 0; int more = 0; if (!rdbgdata) { pr_err("Invalid argument\n"); err = -EINVAL; goto bail; } dev_dbg(rdbgdata->device, "%s: In receive\n", __func__); err = wait_for_completion_interruptible(&(rdbgdata->work)); if (err) { dev_err(rdbgdata->device, "%s: Error in wait\n", __func__); goto bail; } smq_check_queue_reset(&(rdbgdata->consumer_smrb), &(rdbgdata->producer_smrb)); if (smq_receive(&(rdbgdata->consumer_smrb), &p_sent_buffer, &nsize, &more) != SMQ_SUCCESS) { dev_err(rdbgdata->device, "%s: Error in smq_recv(). Err code = %d\n", __func__, err); err = -ENODATA; goto bail; } size = ((size < nsize) ? size : nsize); err = copy_to_user(buf, p_sent_buffer, size); if (err != 0) { dev_err(rdbgdata->device, "%s: Error in copy_to_user(). Err code = %d\n", __func__, err); err = -ENODATA; goto bail; } smq_free(&(rdbgdata->consumer_smrb), p_sent_buffer); err = size; dev_dbg(rdbgdata->device, "%s: Read data to buffer with address 0x%lx\n", __func__, (unsigned long) buf); bail: return err; } static ssize_t rdbg_write(struct file *filp, const char __user *buf, size_t size, loff_t *offset) { int err = 0; int num_retries = 0; struct rdbg_data *rdbgdata = filp->private_data; if (!rdbgdata) { pr_err("Invalid argument\n"); err = -EINVAL; goto bail; } do { err = smq_alloc_send(&(rdbgdata->producer_smrb), buf, size); dev_dbg(rdbgdata->device, "%s, smq_alloc_send returned %d.\n", __func__, err); } while (err != 0 && num_retries++ < MAX_RETRIES); if (err != 0) { pr_err("rdbg: send_interrupt_to_subsystem failed\n"); err = -ECOMM; goto bail; } send_interrupt_to_subsystem(rdbgdata); err = size; bail: return err; } static const struct file_operations rdbg_fops = { .open = rdbg_open, .read = rdbg_read, .write = rdbg_write, .release = rdbg_release, }; static int register_smp2p_out(struct device *dev, char *node_name, struct gpio_info *gpio_info_ptr) { struct device_node *node = dev->of_node; if (gpio_info_ptr) { if (of_find_property(node, "qcom,smem-states", NULL)) { gpio_info_ptr->smem_state = qcom_smem_state_get(dev, "rdbg-smp2p-out", &gpio_info_ptr->smem_bit); if (IS_ERR_OR_NULL(gpio_info_ptr->smem_state)) pr_err("rdbg: failed get smem state\n"); } return 0; } return -EINVAL; } static int register_smp2p_in(struct device *dev, char *node_name, struct gpio_info *gpio_info_ptr) { int id = 0; struct device_node *node = dev->of_node; if (gpio_info_ptr) { id = of_irq_get_byname(node, "rdbg-smp2p-in"); gpio_info_ptr->gpio_base_id = id; gpio_info_ptr->irq_base_id = id; return 0; } return -EINVAL; } static int rdbg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rdbg_device *rdbgdevice = &g_rdbg_instance; int minor = 0; int err = 0; char *rdbg_compatible_string = "qcom,smp2p-interrupt-rdbg-"; int max_len = strlen(rdbg_compatible_string) + strlen("xx-out"); char *node_name = kcalloc(max_len, sizeof(char), GFP_KERNEL); if (!node_name) { err = -ENOMEM; goto bail; } for (minor = 0; minor < rdbgdevice->num_devices; minor++) { if (!proc_info[minor].name) continue; if (snprintf(node_name, max_len, "%s%d-out", rdbg_compatible_string, minor) <= 0) { pr_err("Error in snprintf\n"); err = -ENOMEM; goto bail; } if (of_device_is_compatible(dev->of_node, node_name)) { if (register_smp2p_out(dev, node_name, &rdbgdevice->rdbg_data[minor].out)) { pr_err("register_smp2p_out failed for %s\n", proc_info[minor].name); err = -EINVAL; goto bail; } } if (snprintf(node_name, max_len, "%s%d-in", rdbg_compatible_string, minor) <= 0) { pr_err("Error in snprintf\n"); err = -ENOMEM; goto bail; } if (of_device_is_compatible(dev->of_node, node_name)) { if (register_smp2p_in(dev, node_name, &rdbgdevice->rdbg_data[minor].in)) { pr_err("register_smp2p_in failed for %s\n", proc_info[minor].name); } } } bail: kfree(node_name); return err; } static const struct of_device_id rdbg_match_table[] = { { .compatible = "qcom,smp2p-interrupt-rdbg-2-out", }, { .compatible = "qcom,smp2p-interrupt-rdbg-2-in", }, { .compatible = "qcom,smp2p-interrupt-rdbg-5-out", }, { .compatible = "qcom,smp2p-interrupt-rdbg-5-in", }, {} }; static struct platform_driver rdbg_driver = { .probe = rdbg_probe, .driver = { .name = "rdbg", .of_match_table = rdbg_match_table, }, }; static int __init rdbg_init(void) { struct rdbg_device *rdbgdevice = &g_rdbg_instance; int minor = 0; int major = 0; int minor_nodes_created = 0; int err = 0; if (rdbgdevice->num_devices < 1 || rdbgdevice->num_devices > SMP2P_NUM_PROCS) { pr_err("rgdb: invalid num_devices\n"); err = -EDOM; goto bail; } rdbgdevice->rdbg_data = kcalloc(rdbgdevice->num_devices, sizeof(struct rdbg_data), GFP_KERNEL); if (!rdbgdevice->rdbg_data) { err = -ENOMEM; goto bail; } err = platform_driver_register(&rdbg_driver); if (err) goto bail; err = alloc_chrdev_region(&rdbgdevice->dev_no, 0, rdbgdevice->num_devices, "rdbgctl"); if (err) { pr_err("Error in alloc_chrdev_region.\n"); goto data_bail; } major = MAJOR(rdbgdevice->dev_no); cdev_init(&rdbgdevice->cdev, &rdbg_fops); rdbgdevice->cdev.owner = THIS_MODULE; err = cdev_add(&rdbgdevice->cdev, MKDEV(major, 0), rdbgdevice->num_devices); if (err) { pr_err("Error in cdev_add\n"); goto chrdev_bail; } rdbgdevice->class = class_create(THIS_MODULE, "rdbg"); if (IS_ERR(rdbgdevice->class)) { err = PTR_ERR(rdbgdevice->class); pr_err("Error in class_create\n"); goto cdev_bail; } for (minor = 0; minor < rdbgdevice->num_devices; minor++) { if (!proc_info[minor].name) continue; rdbgdevice->rdbg_data[minor].device = device_create( rdbgdevice->class, NULL, MKDEV(major, minor), NULL, "%s", proc_info[minor].name); if (IS_ERR(rdbgdevice->rdbg_data[minor].device)) { err = PTR_ERR(rdbgdevice->rdbg_data[minor].device); pr_err("Error in device_create\n"); goto device_bail; } rdbgdevice->rdbg_data[minor].device_initialized = true; minor_nodes_created++; dev_dbg(rdbgdevice->rdbg_data[minor].device, "%s: created /dev/%s c %d %d'\n", __func__, proc_info[minor].name, major, minor); } if (!minor_nodes_created) { pr_err("No device tree entries found\n"); err = -EINVAL; goto class_bail; } goto bail; device_bail: for (--minor; minor >= 0; minor--) { if (rdbgdevice->rdbg_data[minor].device_initialized) device_destroy(rdbgdevice->class, MKDEV(MAJOR(rdbgdevice->dev_no), minor)); } class_bail: class_destroy(rdbgdevice->class); cdev_bail: cdev_del(&rdbgdevice->cdev); chrdev_bail: unregister_chrdev_region(rdbgdevice->dev_no, rdbgdevice->num_devices); data_bail: kfree(rdbgdevice->rdbg_data); bail: return err; } module_init(rdbg_init); static void __exit rdbg_exit(void) { struct rdbg_device *rdbgdevice = &g_rdbg_instance; int minor; for (minor = 0; minor < rdbgdevice->num_devices; minor++) { if (rdbgdevice->rdbg_data[minor].device_initialized) { device_destroy(rdbgdevice->class, MKDEV(MAJOR(rdbgdevice->dev_no), minor)); } } class_destroy(rdbgdevice->class); cdev_del(&rdbgdevice->cdev); unregister_chrdev_region(rdbgdevice->dev_no, 1); kfree(rdbgdevice->rdbg_data); } module_exit(rdbg_exit); MODULE_DESCRIPTION("rdbg module"); MODULE_LICENSE("GPL v2");